"High-quality" climate data ...

... "accurate and representative" measurements
... "efficient and reliable" data quality control
... "standardized and relevant" metadata
... "rational and efficient" homogenization procedures

... "???" grid datasets

What does "high quality" mean with regard to spatial climate datasets? Practice and experience at MeteoSwiss

Christoph Frei and Francesco Isotta

Rebekka Erdin, Denise Keller, David Masson, Reinhard Schiemann, Raphaela Vogel, Bettina Weibel, Marco Willi (former collaborators)

Data Management Workshop 28.-30.10.2015, St. Gallen, Switzerland

Opplication and Users

Hydrology

Runoff forecasting, Flood protection, Land slide risks, ...

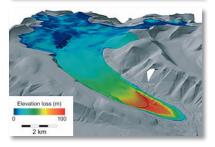
Research

ETH, Univ., FHS Univ. outside CH

Agriculture

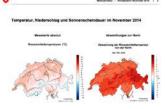
Crop suitablity maps, Crop desease and pests, Subsidies, ...

Energy & Construction Renewable energy, Heating/cooling design, ... Agencies Federal, Regional



Private Sector

Insurance Engineering



Snow & ice

Avalange risk, Slope stability, Glacier monitoring, ...

Internal

Climate monitoring Model verification Local forecasts CC-Scenarios, ...

User Requirements

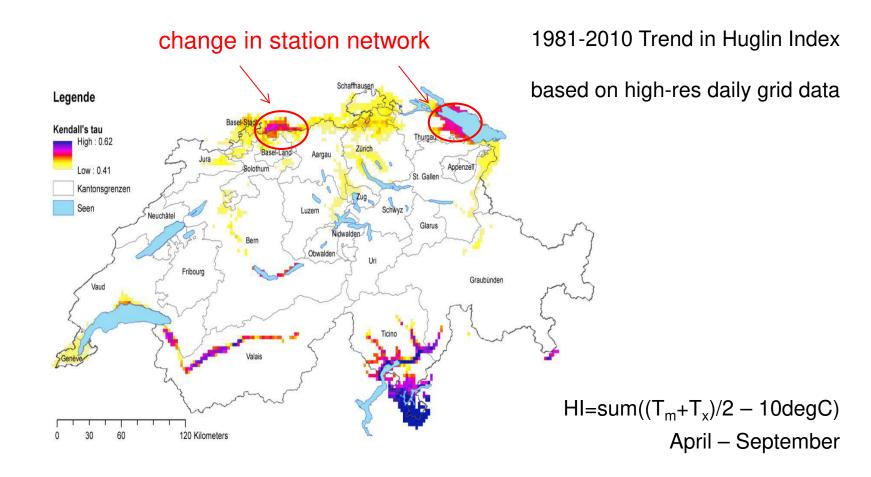
high accuracy (small random errors)

fine spatial resolution (km)

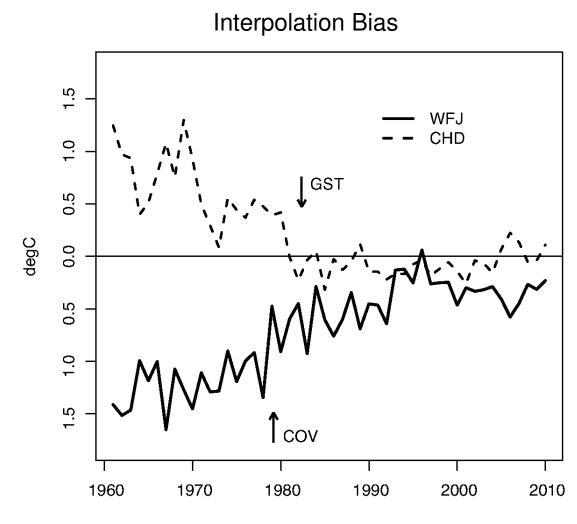
high temporal resolution (1 day, 1 hour)

multi-parameter – physically consistent

multi-decadal - climate consistent



timely – possibly real-time



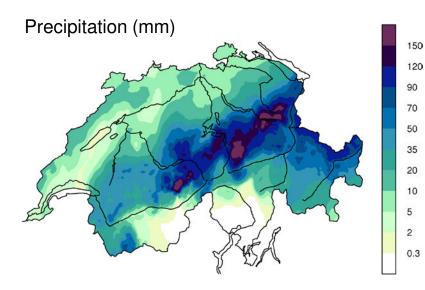
Trends in Viticulture

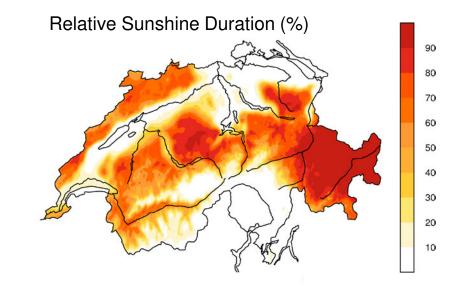
Effects from network changes

Purpose-Design Philosophy

Data products targeted to application groups

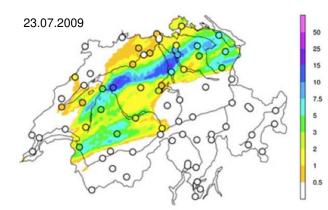
Methods depend on intended application

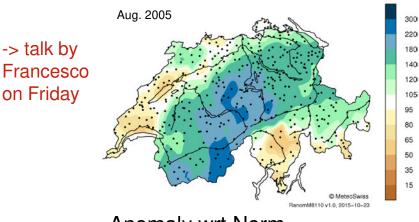

Individual balance between method and data

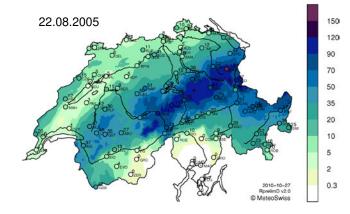


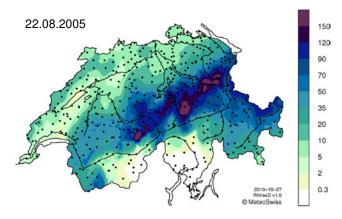
Limitations / uncertainties are openly cummunicated

The MCH Grid-Data Suite

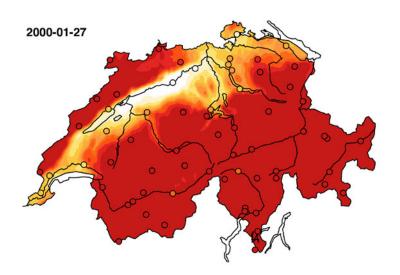



~ 40 products, Temp (m, n, x), Precip, Sun, Radiation territory of Switzerland, 2 km norm, monthly, daily, (hourly), anomaly 1961-actual, 2004-actual (radar-gauge) automatic production and delivery web, reports

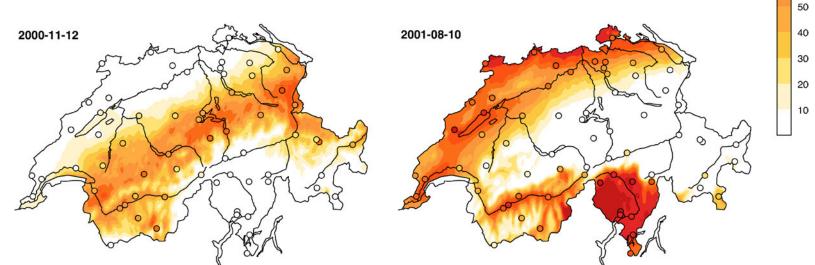

Precipitation – Products


Real-time (hourly) Radar-Gauge combination, t-KED Erdin et al. 2012, Sideris et al. 2014

Anomaly wrt Norm >1960, SYMAP Shepard 1984, Frei et al. 1998

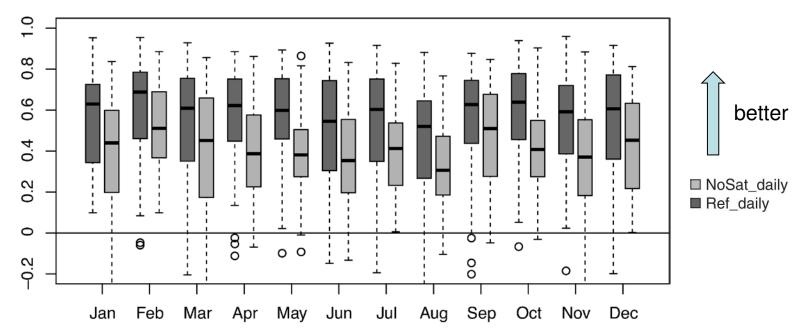


Real-time (daily) Statistical reconstruction (RSOI) Schiemann et al. 2012

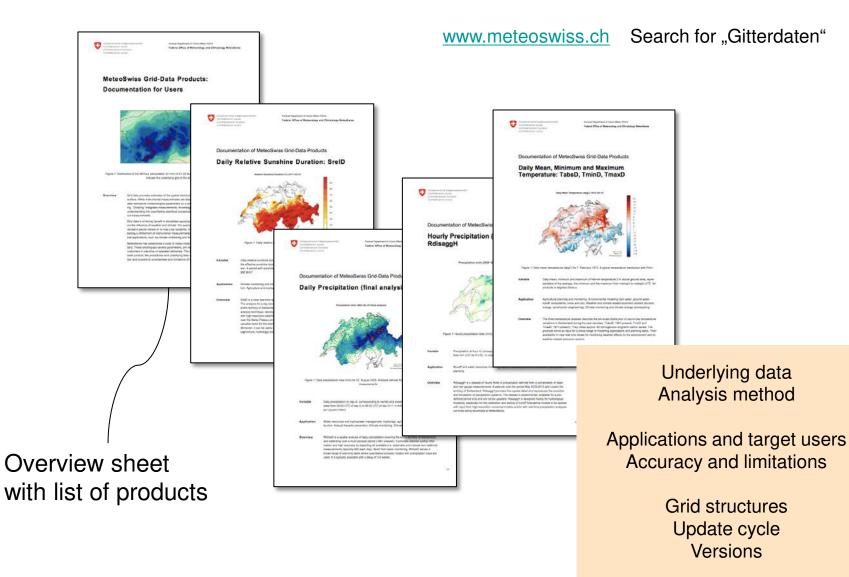


High-resolution (daily, monthly, ...) PRISM & SYMAP Schwarb et al. 2001, Frei et al. 1998, 2004

Relative Sunshine Duration

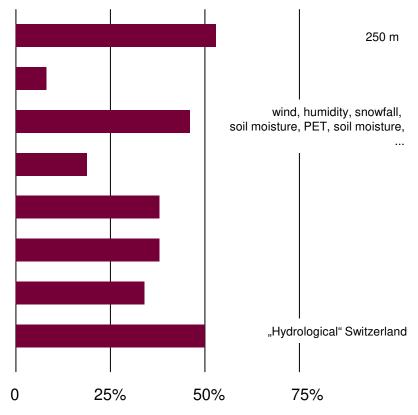

High-resolution SSD Merging satellite (MSG Clear-sky index) and in-situ data (Heliometer, ~75 stations) Non-contemporaneous, PCA & KED Frei et al. 2015, Stöckli 2013

Relative Sunshine Duration


SS : Fraction of explained spatial variance (spatial Nash-Sutcliffe efficiency)

SS (-)

Leave-one-out crossvalidation all days 1998-2001


Documentation for Users

User Wishes (2013)

Your applications could benefit from new products/developments with priority on ...

- ... higher spatial resolution
- ... finer time resolution (hourly)
- ... more parameters
- ... more real-time products
- ... uncertainty information (quantitative)
- ... longer time coverage (<1961)
- ... better long-term consistency
- ... areal extent beyond Swiss border

Number of responses: 26

Our Experience

- "High quality" = USEFUL. Meeting the requirements of applications.
- Requirements are diverse. Products tailored for applications.
- There is not "a best method".
- Users need to grapple with requirements and specifications.
 User-friendly product information.
- Be honest about limitations.
- Improving through collaboration. Bridging producer user gap.
- "High-quality climate services" is about sharing thought, not just data.

Publications

- Erdin, R., C. Frei, and H. R. Künsch, 2012: Data transformation and uncertainty in geostatistical combination of radar and rain gauges. J. Hydrometeorol., 13, 1332–1346, doi:10.1175/JHM-D-11-096.1.
- Frei, C., 2014: Interpolation of temperature in a mountainous region using nonlinear profiles and non-Euclidean distances. Int. J. Climatol., 34, 1585–1605, doi:10.1002/joc.3786.
- Frei, C., M. Willi, R. Stöckli, and B. Dürr, 2015: Spatial analysis of sunshine duration in complex terrain by noncontemporaneous combination of station and satellite data. Int. J. Clim., doi:10.1002/joc.4322.
- Hiebl, J., and C. Frei, 2015: Daily temperature grids for Austria since 1961 concept, creation and applicability. Theor. Appl. Clim., doi:10.1007/s00704-015-1411-4.
- Isotta, F. A. and Coauthors, 2014: The climate of daily precipitation in the Alps: Development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int. J. Clim., 34, 1657–1675, doi:10.1002/joc.3794.
- Isotta, F. A., R. Vogel, and C. Frei, 2015: Evaluation of European regional reanalyses and downscalings for precipitation in the Alpine region. Meteorol. Z., 24, 15-37.
- Masson, D., and C. Frei, 2014: Spatial analysis of precipitation in a high-mountain region: Exploring methods with multi-scale topographic predictors and circulation types. Hydrol. Earth Syst. Sci., 18, 4543–4563, doi:10.5194/hess-18-4543-2014.
- Masson, D., and C. Frei, 2015: Long-term variations and trends of mesoscale precipitation in the Alps: Recalculation and update for 1901-2008. Int. J. Clim., (in press).
- Vogel, R., 2013: Quantifying the uncertainty of spatial precipitation analyses with radar-gauge observation ensembles. Scientific Report MeteoSwiss, 95, 80 pp.
- Willi, M., 2010: Gridding of daily sunshine duration by combination of station and satellite data. Technical Report MeteoSwiss, 232, 89 pp.

Free access to climate observations from Germany:

An overview of recent activities of DWD's Climate Data Center (CDC)

Frank Kaspar, Andrea Kaiser-Weiss, Elsbeth Penda, Frank Kratzenstein

Deutscher Wetterdienst

Data policy: "Geodatennutzungsverordnung"

- → Since 2014 DWD freely provides a much greater selection of climate data (national and international data).
- This was possible based on the so-called "Geodatennutzungsverordnung" (for govermental data).
- Data is protected by copyright, but may be used without any restrictions, provided that the source is indicated ("Deutscher Wetterdienst"). For details see the "terms_of_use.txt".
- \rightarrow Data can be accessed here:

ftp://ftp-cdc.dwd.de/pub/CDC/

CDC FTP-Server (1): Station data

Index von ftp://ftp-cdc.dwd.de/pub/CDC/ 🖺 In den übergeordneten Ordner wechseln Größe Zuletzt verändert Name Change_log_CDC_ftp.txt 13 KB 15.10.2015 13:30:00 Error_log_CDC_ftp.txt 5 KB 19.08.2015 06:44:00 Liesmich_intro_CDC-FTP.pdf 222 KB 15.10.2015 10:48:00 Liesmich_intro_CDC-FTP.txt 7 KB 15.10.2015 10:48:00 📆 Nutzungsbedingungen_German.pdf 34 KB 30.06.2014 00:00:00 Nutzungsbedingungen_German.txt 30.06.2014 2 KB 00:00:00 🔁 Readme_intro_CDC_ftp.pdf 315 KB 15.10.2015 10:50:00 Readme_intro_CDC_ftp.txt 7 KB 15.10.2015 10:50:00 Terms of use.pdf 252 KB 02.07.2014 00:00:00 Terms_of_use.txt 3 KB 02.07.2014 00:00:00 derived germany 06.06.2014 00:00:00 grids_europe 19.06.2015 11:18:00 grids_germany 12.05.2015 08:52:00 08.10.2015 17:26:00 help Observations from German stations observations_germany 19.08.2015 08:58:00 observations_global 23.07.2014 00:00:00 regional_averages_DE 10.07.2014 00:00:00

CDC FTP-Server (2) Station data

Deutscher Wetterdienst Wetter und Klima aus einer Hand

n den übergeordneten Ordner wechseln		
2		
Name	Größe	Zuletzt verände
enology		

Observations at German stations

Historical and recent data:

Air temperature, soil temeprature, pressure, wind (speed and dierction), sunshine duration, cloudiness and radiation

Temporal resolution:

hourly, daily, monthly, long-term (1961-90, 1971-2000, 1981-2010)

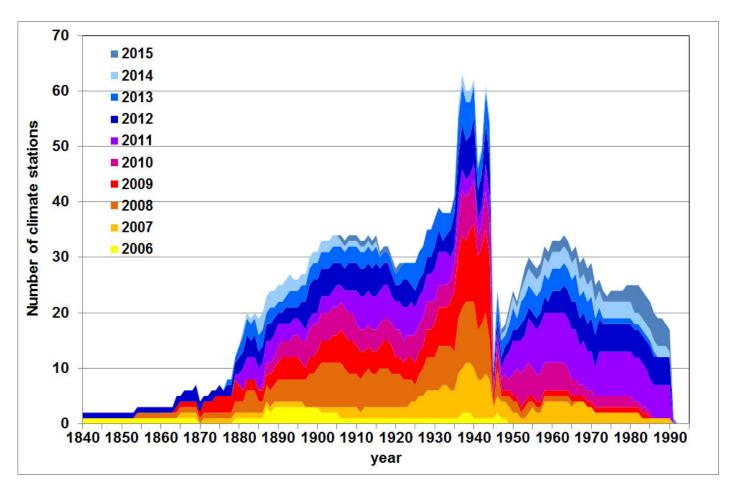
Phenology

Reporting:

Annual and immediate reporters

approx. 1200 active stations where the state of development of selected plants (e.g., apple, birch, snow drops, goose berry, wheat, wine etc) is reported.

Remarks on provision of station data


Historic data in the data base might change due to quality control or data rescue activities.

Historic time series on the public server are therefore updated once a year.

,Recent data' include approx. the data of the last year (until yesterday). These packages are updated daily.

Data rescue

Annual number of **climate** stations digitized by the KLIDADIGI project in the period 2006-2015 (colors)

Selected examples of station-related metadata (in German, station ,Kassel'):

Top: details on daily average wind speed;

Bottom: instrumentation used for precipitation measurements.

Stations_ID	Stationsname	Parameter	Parameter- beschreibung	Einheit	Von_Datum	Bis_Datum	Datenquelle	Zusatz-Info	Besonderheiten	Literaturhinweis
2532	Kassel	FM	Tagesmittel der Windgeschwindigkeit m/s Messnetz 3	m/sec	19540101	19741231	Winddaten (Stundenmittel, maximale Windspitze 00:00-23:59 MEZ) generiert aus analogen Registrierungen. Richtungsangaben in der 32-teiligen Windrose.	arithm.Mittel aus mind. 21 Stundenwerten		
2532	Kassel	FM	Tagesmittel der Windgeschwindigkeit m/s Messnetz 3	m/sec	19750101	19990831	Winddaten (Stundenmittel, maximale Windspitze 00:00-23:59 MEZ) generiert aus analogen Registrierungen. Richtungsangaben in der 36-teiligen Windrose.	arithm.Mittel aus mind. 21 Stundenwerten		
2532	Kassel	FM	Tagesmittel der Windgeschwindigkeit m/s Messnetz 3	m/sec	19980201	20030831	Winddaten (Stundenmittel, maximale Windspitze 23:51-23:50 UTC) generiert aus 10-Minutenmittel von automatischen Stationen der 1.Generation (MIRIAM/AFMS2), Richtungsangaben in 36-teiliger Windrose	arithm.Mittel aus mind. 21 Stundenwerten		
2532	Kassel	FM	Tagesmittel der Windgeschwindigkeit m/s Messnetz 3	m/sec	20011001	20020530	Winddaten (Stundenmittel, maximale Windspitze 23:51-23:50 UTC) generiert aus SYNOP- Meldungen, Richtung als 10-Minutenmittel aus SYNOP- Termin, Richtungsangaben in 36-teiliger Windrose	arithm.Mittel aus mind. 21 Stundenwerten		
2532	Kassel	FM	Tagesmittel der Windgeschwindigkeit m/s Messnetz 3	m/sec	20030901	20131031	Winddaten (Stundenmittel, maximale Windspitze 23:51-23:50 UTC) generiert aus 10-Minutenmittel von automatischen Stationen der 2. Generation (AMDA), Richtungsangaben in 36-teiliger Windrose	arithm.Mittel aus mind. 21 Stundenwerten		

Stationsgeschichte der Geräte für Niederschlagsmessungen

Stations_ID	Stationsname	Geo. Laenge [Grad]	Geo. Breite [Grad]	Stations- hoehe [m]	Von_Datum	Bis_Datum	Geraetetyp Name	Messverfahren
2532	Kassel (West)					30.04.1951	Gerätetyp unbekannt	Niederschlagsmessung, Hellmann
2532	Kassel (West)	9.45	51.31	187	01.05.1951	24.09.1953	Niederschlagsschreiber (unbeheizt)	Niederschlagsmessung, Hellmann
2532	Kassel (West)	9.45	51.31	187	01.05.1951	24.09.1953	Niederschlagsmesser	Niederschlagsmessung, Hellmann
2532	Kassel (Süd)	9.48	51.31	158	25.09.1953	30.09.1969	Niederschlagsschreiber (unbeheizt)	Niederschlagsmessung, Hellmann
2532	Kassel (Süd)	9.48	51.31	158	01.09.1969	19.07.1977	Niederschlagsschreiber (beheizt)	Niederschlagsmessung, Hellmann
2532	Kassel (Süd)	9.48	51.31	158	25.09.1953	19.07.1977	Niederschlagsmesser	Niederschlagsmessung, Hellmann
2532	Kassel	9.44	51.3	231	20.07.1977	19.10.2003	Niederschlagsschreiber (beheizt)	Niederschlagsmessung, Hellmann
2532	Kassel	9.44	51.3	231	20.07.1977	19.10.2003	Niederschlagsmesser	Niederschlagsmessung, Hellmann
2532	Kassel	9.44	51.3	231	18.04.2000	12.07.2006	PLUVIO-OTT	Niederschlagsmessung, Hellmann, elektr
2532	Kassel	9.44	51.3	231	18.04.2000	12.07.2006	Niederschlagsgeber Kroneis	Niederschlagsmessung, elektr.
2532	Kassel	9.44	51.3	231	01.11.2008	31.10.2013	Laser-Niederschlagsmonitor LNM	Niederschlagsmessung, elektr.
2532	Kassel	9.44	51.3	231	13.07.2006	31.10.2013	Niederschlagsgeber Kroneis	Niederschlagsmessung, elektr.
2532	Kassel	9.44	51.3	231	13.07.2006	02.11.2013	PLUVIO-OTT	Niederschlagsmessung, Hellmann, elekt

generiert: 22.05.2014 -- Deutscher Wetterdienst --

ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/daily/kl/historical/

Wetter und Klima aus einer Hand

Index von ftp://ftp-cdc.dwd.de/pub/CDC/

🔶 In den übergeordneten Ordner wechseln

Name	Größe	Zuletzt ve	rändert
	3 KB	10.02.2015	11:56:00
Frror_log_CDC_ftp.txt	3 KB	20.01.2015	11:10:00
Liesmich_intro_CDC-FTP.pdf	207 KB	22.10.2014	14:02:00
Liesmich_intro_CDC-FTP.txt	7 KB	22.10.2014	14:02:00
📡 Nutzungsbedingungen_German.pdf	34 KB	30.06.2014	00:00:00
📙 Nutzungsbedingungen_German.txt	2 KB	30.06.2014	00:00:00
Readme_intro_CDC_ftp.pdf	333 KB	07.11.2014	14:56:00
Readme_intro_CDC_ftp.txt	6 KB	07.11.2014	15:01:00
> Terms_of_use.pdf	252 KB	02.07.2014	00:00:00
[] Terms_of_use.txt	з кв	02.07.2014	00:00:00
🚞 derived_germany		06.06.2014	00:00:00
grids_germany Gridded products for Germany		26.06.2014	00:00:00
a help		04.02.2015	12:05:00
bservations_germany		11.02.2015	09:01:00
🚞 observations_global		23.07.2014	00:00:00
regional_averages_DE		10.07.2014	00:00:00

Gridded fields covering Germany at different temporal resolutions (not every parameter is given at all resolutions).

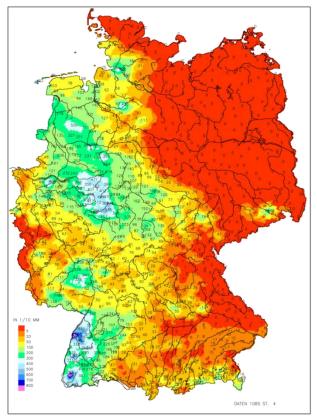
Following **precipitation data** are available: *RADOLAN* precipitation fields are derived from radar together with station data (hourly, daily).

REGNIE precipitation fields are derived from precipitation stations only (daily). Precipitation fields derived from climatological stations only are given with monthly resolution.

Soil moisture, soil temperature at 5cm depth, potential and real evaporation are available at daily, monthly, and multi-annual resolution

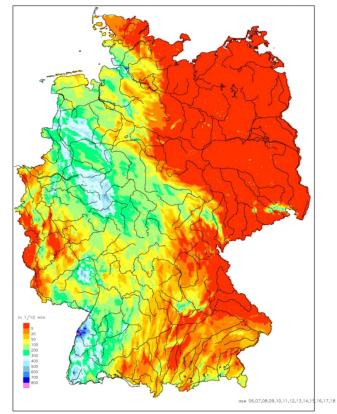
Air temperature (mean, max, min), sunshine duration, drought index, as well as the numbers of days with snow, frost days, or exceeding certain thresholds for temperature or for precipitation are given at monthly or multi-annual resolution.

Solar irradiance fields are derived from satellite data and ground-based stations at monthly, annual and multi-annual resolution.


Wind energy related parameters derived from station measurements are given as multiannual mean.

Examples: gridded daily precipitation products:

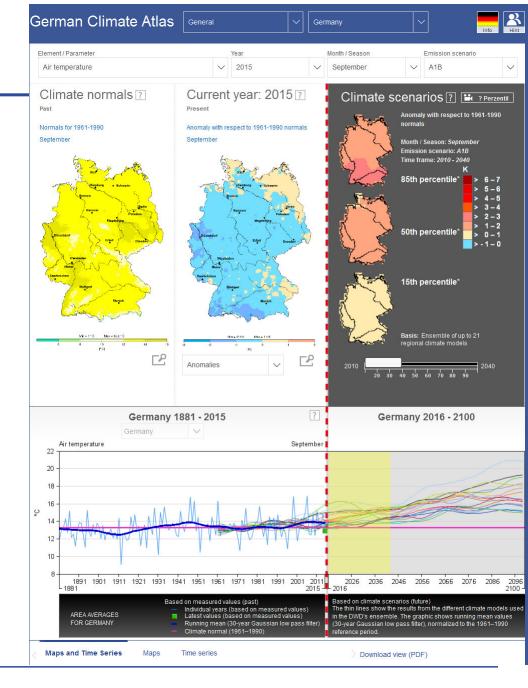
ROUTHM1 2014-07-21 08:35:42



 derived from station measurements (REGNIE) ftp:// Deutscher Wetterdienst Wetter und Klima aus einer Hand

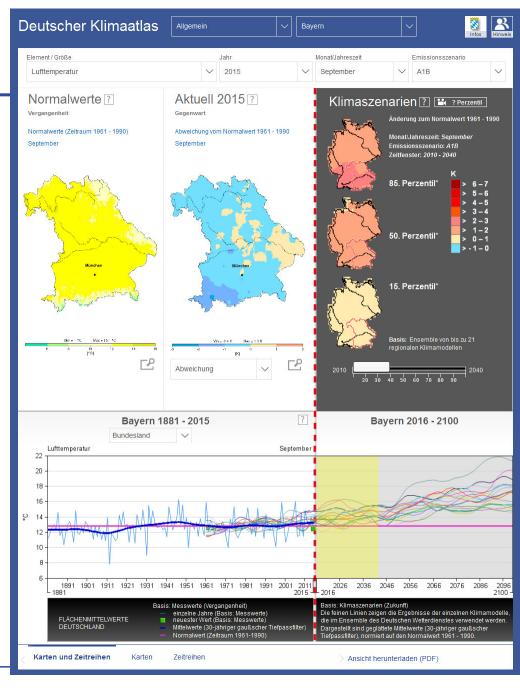
ROUTHM1 2014-07-22 09:25:15

Summe der RW-Stunden vom Vortag 06:50 bis 21.07.14 05:50 UTC (SKY)


→ derived from radar observations combined with station data (RADOLAN).

ftp://ftp-cdc.dwd.de/pub/CDC/grids_germany/daily/regnie/ ftp://ftp-cdc.dwd.de/pub/CDC/grids_germany/daily/radolan/

German Climate Atlas


 Allows visualisation of monthly gridded climate montoring products.

Recent development:

Information for Germany's federal states.

Index von ftp://ftp-cdc.dwd.de/pub/CDC/

1 In den übergeordneten Ordner wechseln

Name		Größe	Zuletzt ve	ränder
Change_log_CDC_ftp.t	xt	2 KB	12.09.2014	10:39:00
Error_log_CDC_ftp.txt		2 KB	19.09.2014	10:42:00
1 Liesmich_intro_CDC-F	TP.pdf	201 KB	31.07.2014	16:43:00
Liesmich_intro_CDC-F	TP.txt	6 KB	31.07.2014	16:43:0
🔁 Nutzungsbedingunger	_German.pdf	34 KB	30.06.2014	19:51:0
Nutzungsbedingunger	_German.txt	2 KB	30.06.2014	20:11:0
🔁 Readme_intro_CDC_ftp	.pdf	327 KB	30.06.2014	21:16:0
Readme_intro_CDC_ftp).txt	5 KB	30.06.2014	21:16:0
🔁 Terms_of_use.pdf		252 KB	02.07.2014	13:32:0
Terms_of_use.txt		3 KB	02.07.2014	13:32:0
derived_germany	derived data		06.06.2014	10:07:0
grids_germany			26.06.2014	16:46:0
help			24.09.2014	10:49:0
bobservations_germany			09.06.2014	10:58:0
observations_global			23.07.2014	12:36:0
regional_averages_DE			10.07.2014	07:19:0

Derived parameters at station locations

→ Soil parameters include

the potential and real evaporation over grass and sandy clay, the soil moisture below sand and sandy clay, the calculated soil temperatures at 5cm, 10cm, 20 cm, 50 cm and 100cm depth below bare soil, and the maximal frost penetration depth.

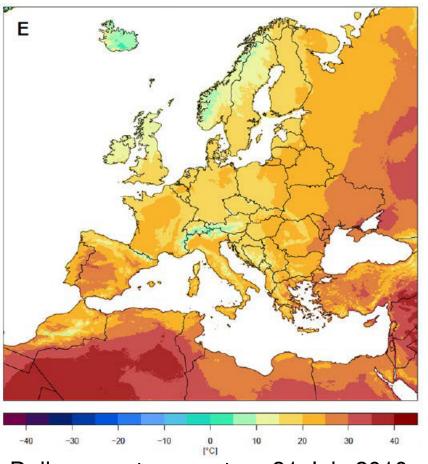
Available resolution: daily, monthly and multi-annual. The soil parameters are calculated for about 320 stations since 1991.

www.dwd.de

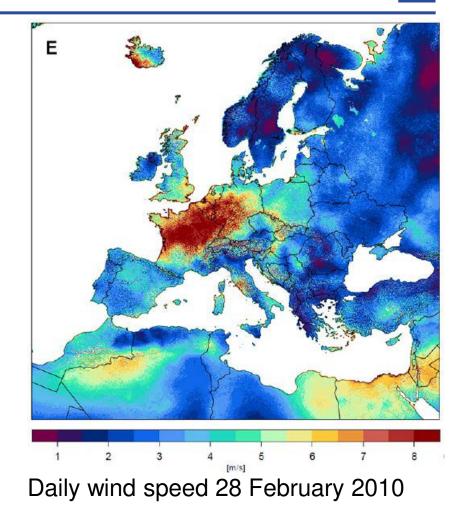
Data set descriptions

- Metadata are provided by the internal experts for each data product (-> Excel)
- Automatic procedure to generate ,data set description (PDF).
- INSPIRE-XMLs for GISC or DOIregistration can also be automatically (and consistently) generated.

	L	DATA SET	DESCRIPTION		
Phenological o	bservations of	f crops from s	owing to harvest (immediate reporters		
Version v0.x					
Cite data set as:	DWD Climete Data reporters), Version		ogical observations of crops from sowing to harvest (immedia		
INTENT OF THE D	ATASET				
This describes the freely flagged with a quality by		WD Climate Data Cer	nter (CDC). The phenological data are quality controlled and		
POINT OF CONTA	ст				
Deutscher Wetterdienst CDC - Vertrieb Klima un Frankfurter Straße 135 63067 Offenbech Tal.: + 49 (0) 69 8062-4 Fax.: + 49 (0) 69 8062-4 Mail: Klima vertrieb@dw	400 409				
DATA DESCRIPTI	ON				
Spatial coverage	Germany				
Temporal coverage	01.01.1979 - current year				
Temporal resolution	annually				
Format(s)	fixed object_id (e.g., Each row correspon reporters) and corre	208). The rows are a da to one observation	a the observation of a certain species (e.g., cet), with ortad according to Stations_id, reference year, phase_id. The list with all phenological stations (immediate an be found here: <u>tp://tp-cdc.dwd.dw/pub/CDC/hep/</u> bd.		
Parameters	permanent gresland barley, oat, sunflow	, winter wheat, winter er, maize, potato, beet	rye, winter berley, winter oilseed rape, summer wheat, spring folder beet.		
	Qualitaetaniveeu	500	Quality_flegs		
	Stations_id Referenzjahr	500	station int year corresponding		
		5537	to phase		
	Objekt_id Phase_id	500	definition grope pheno_phene_id.brt		
	Entrittedetum	date of joining	yyyymmdd		
	Eintrittedetum_QB	500	Quality_flags		
	Jultag	date of observation			
	Pactors for uncertain	nties include: (1) chan	ge of observer (2) change of plants.		
Uncertainties		- describes the data	control. The individual dates are flagged with a quality byte		
Uncertainties Quality information	(Ereignisdetum_QB				
		r.	2 - controled on individual		
	(Ereigniedetum_QB Qualiteeteniveeu:	r.	2 - controled on individual ofteria		
	(Ereigniedetum_QB Qualiteeteniveeu:	r.	criteria		


Datasets from externally funded activities

- ➔ Gridded products for Europe
- ➔ Homogenized radiosonde data



daily grids temp./wind for Europe 2001-2010

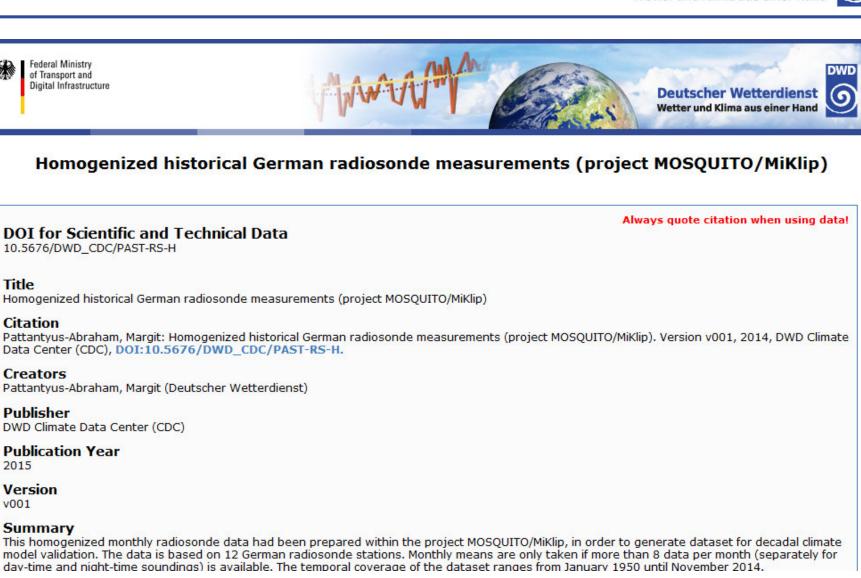
Daily mean temperature 31 July 2010

doi: 10.5676/DWD_CDC/DECREG0110v1

High-resolution daily gridded datasets of air temperature and wind speed for Europe: doi:10.5194/essdd-8-649-2015 (ESSD)

Earth Syst. Sci. Data Discuss., 8, 649–702, 2015 www.earth-syst-sci-data-discuss.net/8/649/2015/ doi:10.5194/essdd-8-649-2015 © Author(s) 2015. CC Attribution 3.0 License. Science

This discussion paper is/has been under review for the journal Earth System Science Data (ESSD). Please refer to the corresponding final paper in ESSD if available.


High-resolution daily gridded datasets of air temperature and wind speed for Europe

S. Brinckmann¹, S. Krähenmann², and P. Bissolli¹

 ¹Climate Monitoring, Deutscher Wetterdienst, Frankfurter Strasse 135, 63067 Offenbach, Germany
 ²Central Climate Office, Deutscher Wetterdienst, Frankfurter Strasse 135, 63067 Offenbach, Germany

Received: 30 June 2015 - Accepted: 8 July 2015 - Published: 12 August 2015

2015

v001

*

Summary

Current status:

- Since last year, DWD significanly extended free access to climate data
- These data are currently provided with a FTP-Server
- Academic users are very enthusiastic about that; others would like to have more interactive access to the data.
- An interactive portal is currently in preparation ("CDC-2.0")

Why do we need historical climate data?

mala

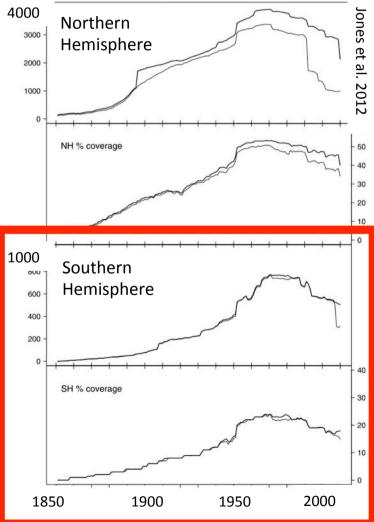
stama me

Context

Ballarat, Victoria, 2000

Susan Gordon-Brown, State Library of Victoria (SLV)

Northern South Australia, 1865



Calibration

University of Wisconsin

Coverage

Robert Bruce, SLV

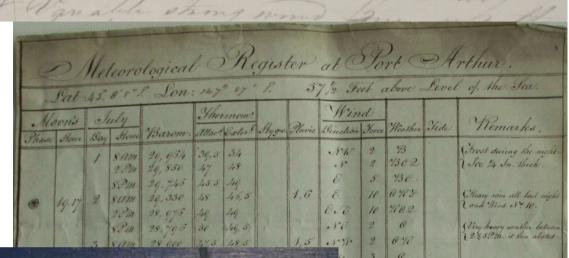
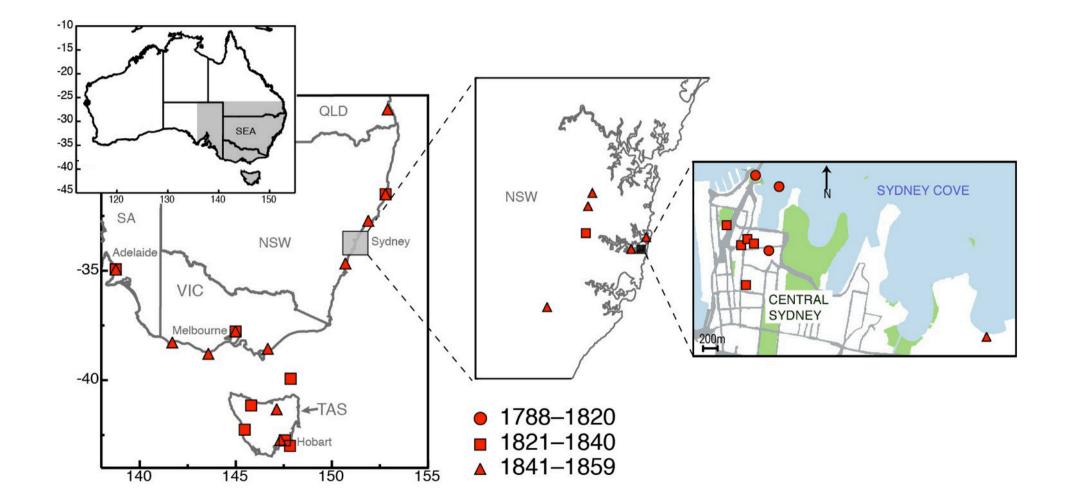
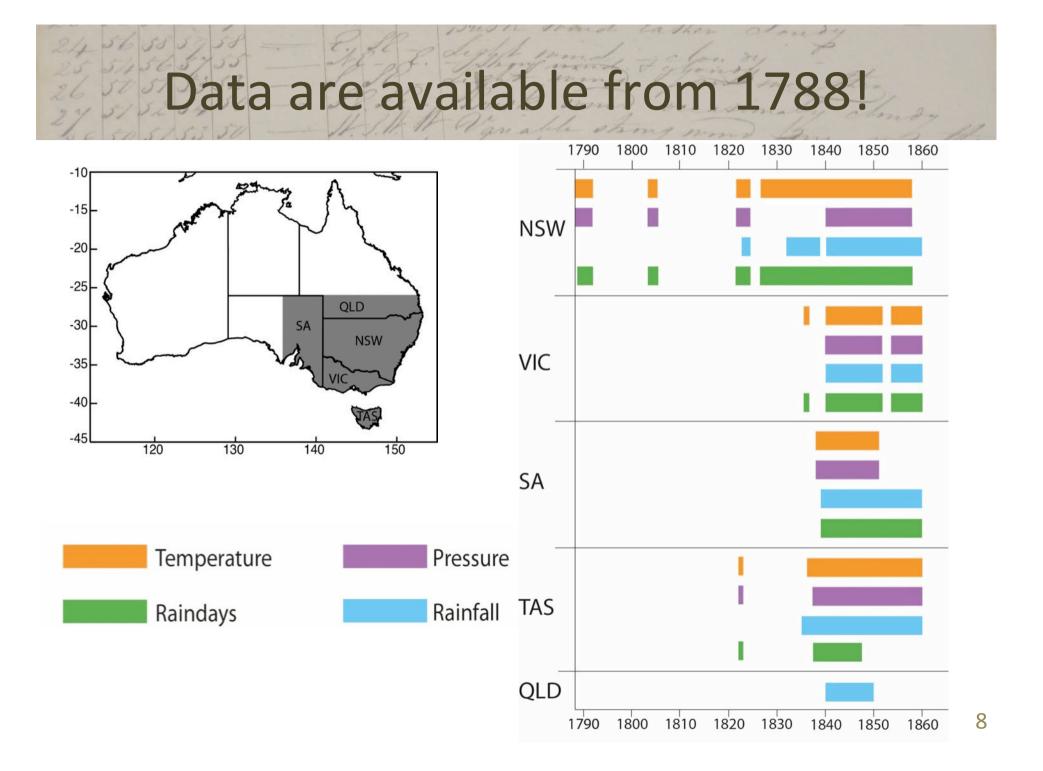

What exists in Aust. for 1788–1860?

TABLE OF RAIN.

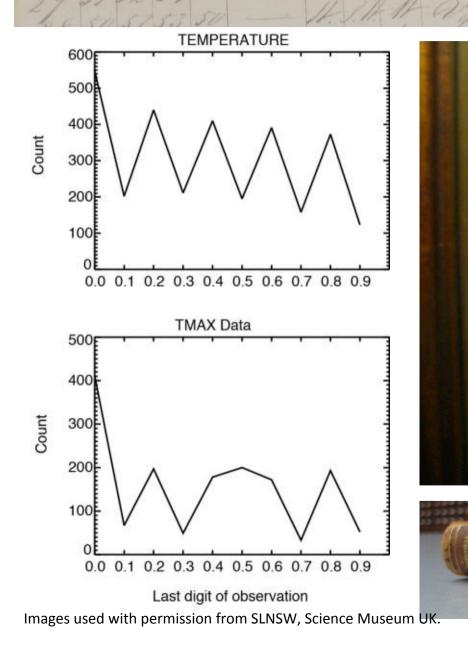
Statement of the Fall of Rain at the Van Diemen's Land Company's Establishment, Hampshire Hills, during the years 1835-1839, by Joseph Milligan, Esq.

	Total Jak monthly during b yours	atar. Jali in any 24 Aourt	Fall during the month.	Mar. Jall in any 24 Acres.	Fall during the month.	Mar. fall in my Bi heurs.	Fall diring the month.	Max fall in any Ol hours.	Pail during the month.	Mar. fuil 14 and 26 James.	Full during the month.
		18	335.	18	336.	16	337.	16	38.	18	39.
January Pebruary March April Jupe Jupe Jupe September October November December	27-78 44-94 32-59 31-52	2 14 50 1 58	318 235 650 651 464 698 778 109	1-81 1-95 1-96 1-96 4-78 2-14 -07 1-98 -02	548 978 554 267 750 907 8-27 970 8-27 970 8-27	1-86 40 1-82 2-21 1-82 2-21 1-82 1-82 1-82 1-86 1-80	4/88 8/65 7/08 18/79 11-35 7/70 7/90 7/90	1 10 2 50 37 1 15 2 62 1 91 2 54 1 99	4-10 2-97 5-79 9-86 11-08 18-81	•90 1*06 •91 1*07 3*16 1*19 3*88 3*46	3-94 2-44 3-04 2-47 7-94 4-21 5-55 6-57
Total Annual Pail			56-75	1	75-18	-	80-58				

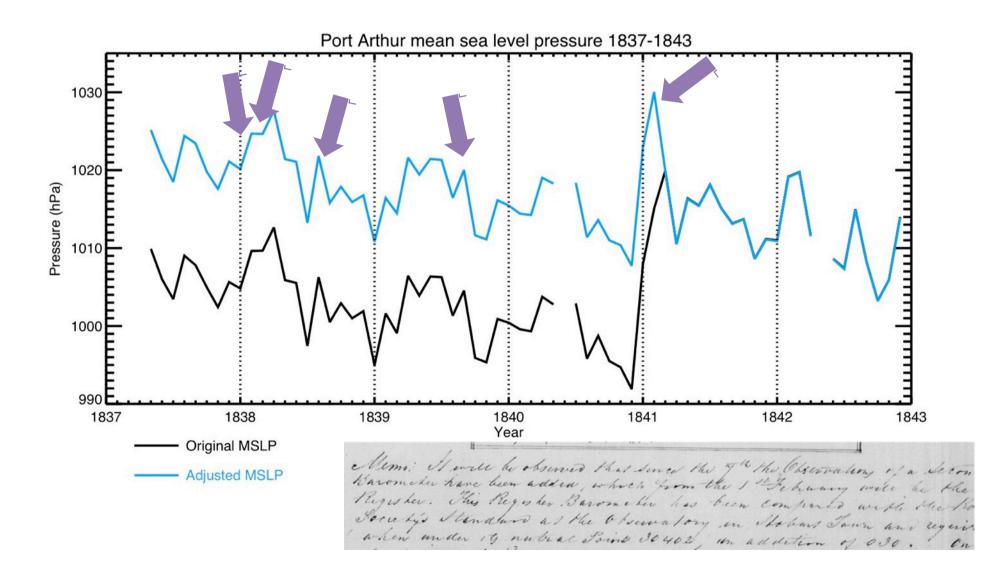

Mean annual fall of rais for five years, 67-44 inches. Greatest (hours, during the same five years, 5-78 inches

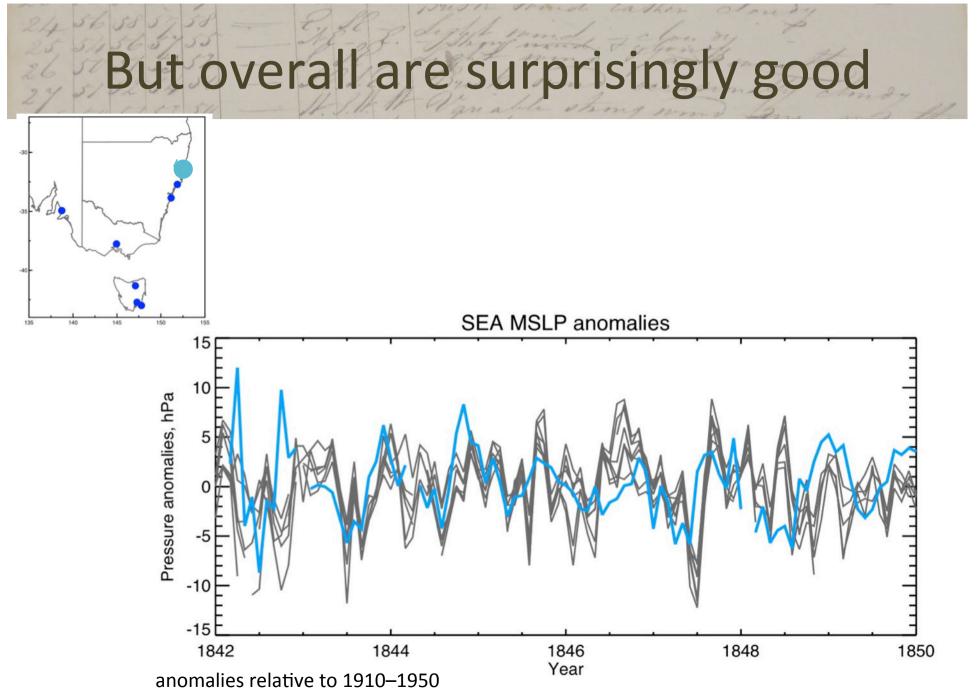


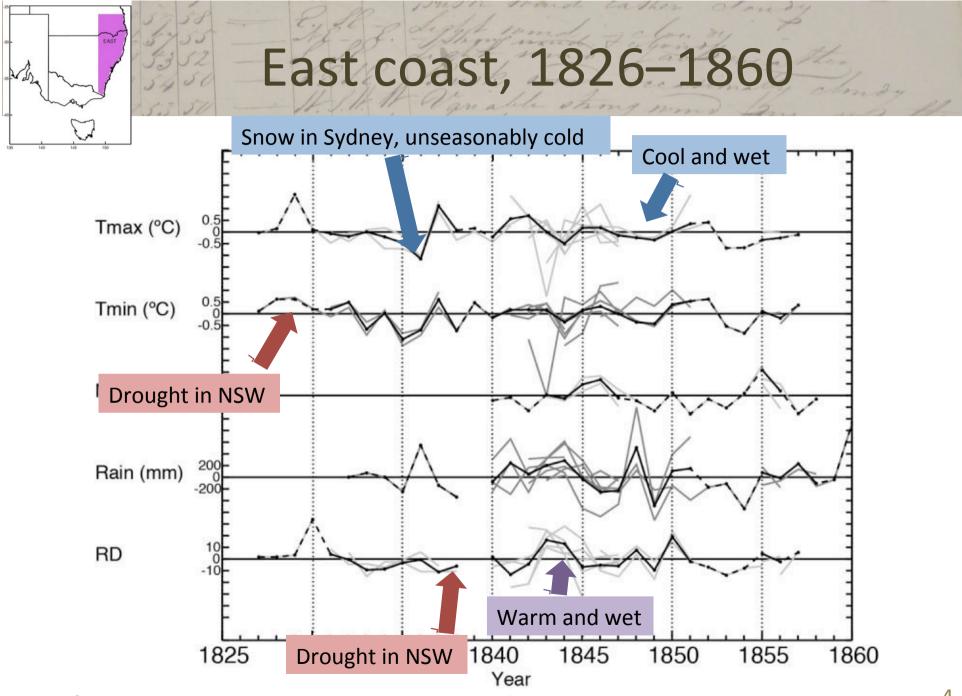
SOUTH AUSTRALIA.

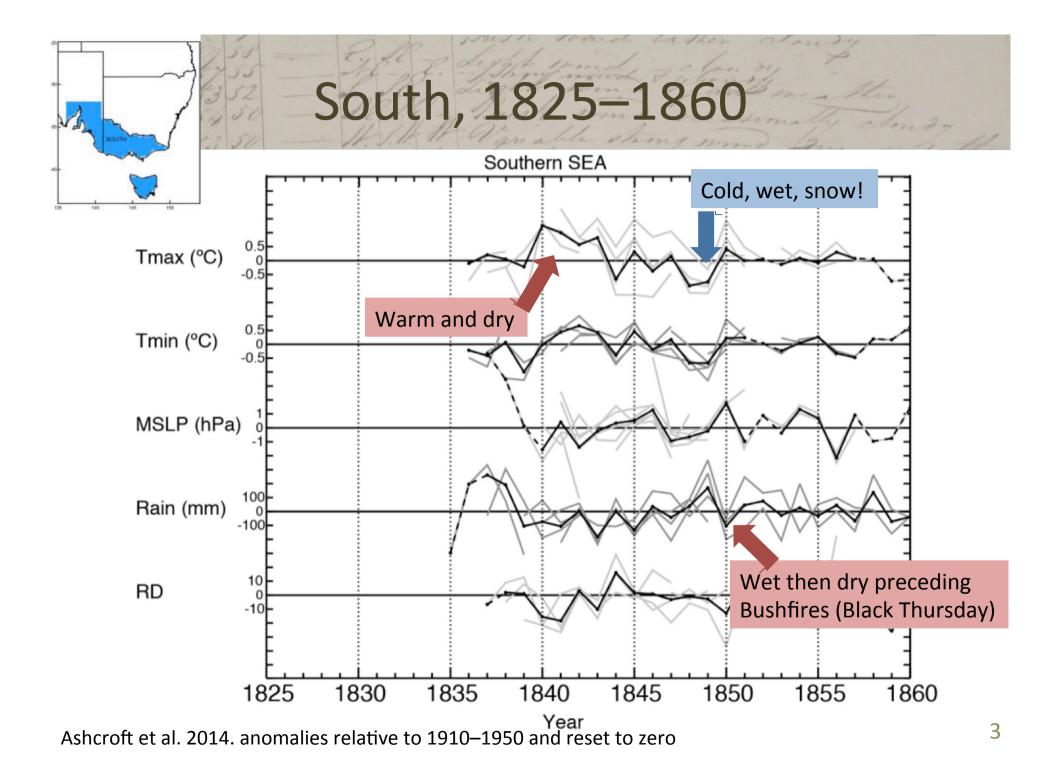


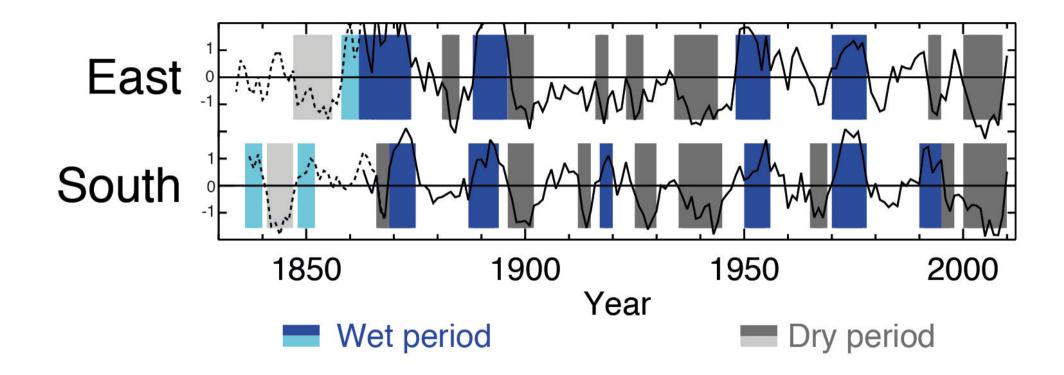
Stations are confined to the coast

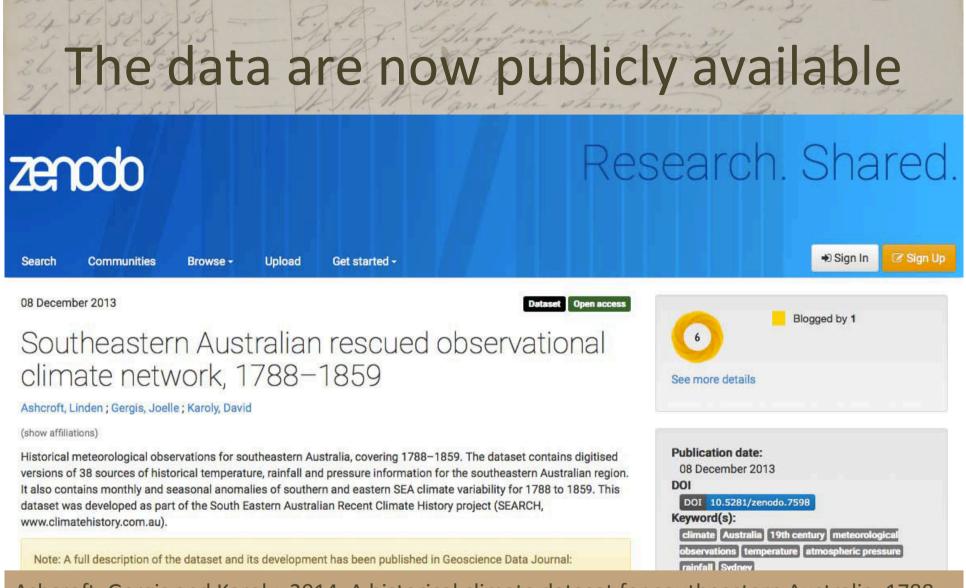



Some observations have biases

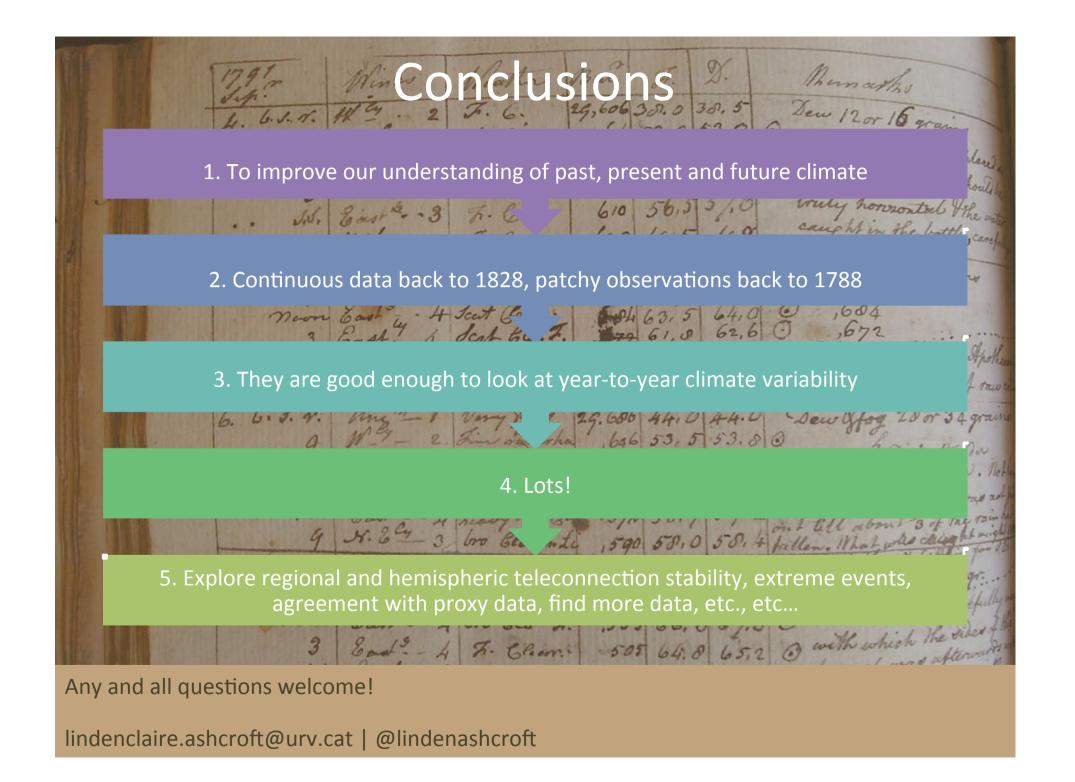






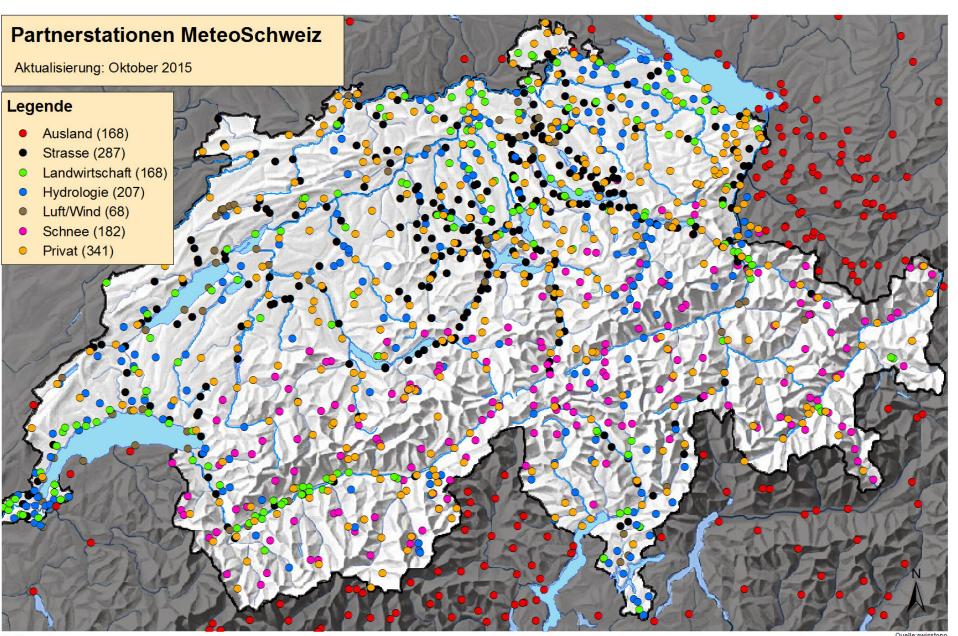


Ashcroft et al. 2014. anomalies relative to 1910–1950 and reset to zero


Prolonged wet and dry periods, 1835–2012

Ashcroft, Gergis and Karoly. 2014. A historical climate dataset for southeastern Australia, 1788–1859. *Geoscience Data Journal*, 1(2): 158–178, DOI: 10.1002/gdj3.19.

Ashcroft, Gergis and Karoly. 2015. Long-term stationarity of El Niño–Southern Oscillation teleconnections in southeastern Australia. *Climate Dynamics*, DOI: 10.1007/s00382-015-2746-3



Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz

METEO-Cert: Acceptance Procedure for Automatic Weather Stations

Joël Fisler, Marlen Kube & Bertrand Calpini (MeteoSwiss)

10th EUMETNET Data Management Workshop St. Gallen | October 28th 2015

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz

Pre-Analysis (Auditor)

Audit on site (Auditor & Operator)

Post-Analysis (Operator)

Cycle repeated every 5 years!

Auditor = Neutral third-party organization conducting assessment

METEO-Cert - Acceptance Procedure for Automatic Weather Stations Joël Fisler, Marlen Kube, Bertrand Calpini (MeteoSwiss)

Fully compliant All WMO requirements fulfilled

Compliant

Most requirements fulfilled

Not compliant / Special Site Some important WMO requirements not fulfilled! Be aware of the limitations and use data with caution.

METEO-Cert - Acceptance Procedure for Automatic Weather Stations Joël Fisler, Marlen Kube, Bertrand Calpini (MeteoSwiss)

METEO-Cert: Report

Information about the installed instruments T, RH, p, Wind, Precipitation, Radiation What assessed instruments are installed? Comments about the station or non-assessed instruments Not Compliant Temperature and Humidity Sensor Davis: Vantage Pro2 (6153, with fan) Is the sensor correctly ventilated? is the sensor protected and weather-proof? Accuracy of instrument at 20C 0.50 K Accuracy of relative humidity instrument 3.00% 2.0 m Measurement height is the sensor correctly exposed? Leroy site classification Station supervision [points] Frequency of calibration in lab or replacement? [years] never Frequency of comparison measurements or controls on site by oper 24 months Frequency of maintenance by Keeper? [week] 2 weeks Is there a parallel measurement with a second instrument? Is there automatic data control or monitoring? Post-Analysis: Effective data availability 96% Post-Analysis: Effective max. downtime of an instrument in 80% of c 3 days Sensor is between buildings Comments

Pressure	Compliant	
Sensor	Davis: Vantage Pro2 (6153, with fan)	
Is the sensor protected and weather-proof?	Yes	2
Accuracy of instrument at 20 °C	1.00 hPa	1
Altitude of pressure sensor [m]	705.0 m	
Accuracy of measurement altitude [cm)	100 cm	1
Is the sensor correctly exposed?	Yes	2
Station supervision [points]	3	1
Frequency of calibration in lab or replacement? [years]	never	0
Frequency of comparison measurements or controls on site by ope	24 months	1
Is there a parallel measurement with a second instrument?	No	0
Is there automatic data control or monitoring?	Yes	2
Post-Analysis: Effective data availability	96%	2
Post-Analysis: Effective max. downtime of an instrument in 80% of c	3 days	2
Comments		

Wind Not Compliant Davis: Vantage Pro2 (6153, with fan) Sensor Accuracy of wind speed instrument [%] Accuracy of wind direction instrument [°] Is instrument heating site-appropriate? Does the sensor measure up to 180km/h? Yes Is the sensor correctly exposed? Yes Error dependent on roughness and measurement height Measurement height (from ground) 14.0 m Wind class according to Davenport Leroy site classification No Station supervision [points] 5 Frequency of calibration in lab or replacement? [years] never 6 Frequency of comparison measurements or controls on site by open 24 months Frequency of maintenance by Keeper? [week] 4 weeks Is there a parallel measurement with a second instrument? No Is there automatic data control or monitorina? Yes Post-Analysis: Effective data availability Post-Analysis: Effective max. downtime of an instrument in 80% of c 3 days Comments The sensor is on the roof, 2m above the top

Precipitation	Not Compliant	
Sensor	Davis: Vantage Pro2 (6153, with fan)	
Is instrument designed to work under snow and hail conditions?	No	0
Is instrument heating site-appropriate?	No	0
Is instrument based on tipping-gauge pricinple?	Yes	
Accuracy [%]	4%	2
Collector size	214 mm2	1
Measurement height	2.4 m	1
Is the sensor correctly exposed?	Yes	2
Leroy site classification	4	0
Is the instrument on a roof?	No	2
Station supervision [points]	5	1
Frequency of calibration in lab or replacement? [years]	never	0
Frequency of comparison measurements or controls on site by ope	24 months	1
Frequency of maintenance by Keeper? [week]	2 weeks	2
Is there a parallel measurement with a second instrument?	No	0
Is there automatic data control or monitoring?	Yes	2
Post-Analysis: Effective data availability	96%	2
Post-Analysis: Effective max. downtime of an instrument in 80% of a	3 days	2
Comments	Very close to the house (2.3 m)	

5% 3.0°

No

Yes

No

25%

5

5

No

Yes

96%

8 City cer

Criteria assessed

The quality of a station is influ METEO-Cert does take into a summarized in the following c

- 1. Instrument
- 2. Siting and Exposure
- 3. Maintenance and Observ
- 4. Post-Analysis

World Meteorological Organization Wastle + Clinets - Water Guide to Meteorological Instruments and Methods of Observation

Weather • Climate • Water

2008 edition Updated in 2010

- 1. Instrument
- 2. Siting and Exposure
- 3. Maintenance and Observer
- 4. Post-Analysis

In order to be «fully compliant» an instrument has to meet all the requirements listed in the CIMO guide including:

- Achievable measurement uncertainty (CIMO Guide, Annex 1D)
- Ventilation
- Heating
- Protection
- and more...

- 1. Instrument
- 2. Siting and Exposure
- 3. Maintenance and Observer
- 4. Post-Analysis

METEO-Cert includes the following criteria:

- CIMO Siting Classification (CIMO Guide, Annex 1B)
- Measurement Height
- Correct station exposure (CIMO Guide, Annex 1C)
- Rain gauge not mounted on roof
- and more...

- 1. Instrument
- 2. Siting and Exposure
- 3. Maintenance and Observer
- 4. Post-Analysis

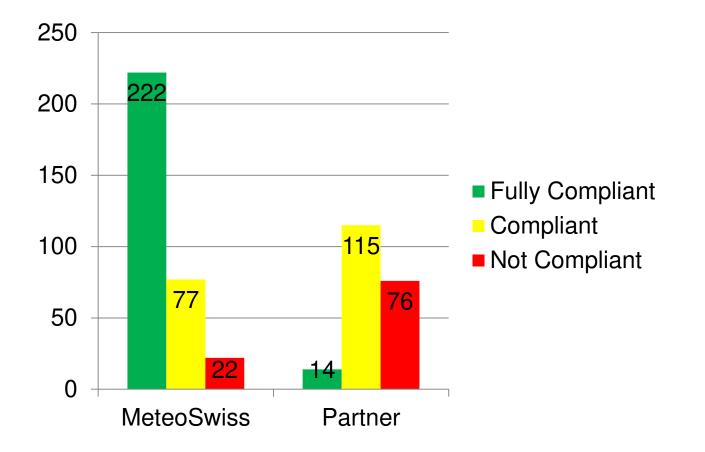
METEO-Cert includes the following criteria:

- How often are instruments calibrated (in lab)
- How often does operator do control measurements on site
- How often is maintenance by warden done
- Is there an automatic data control?
- Is there a parallel measurement?

(At least three criteria should be fulfilled to be fully compliant)

- 1. Instrument
- 2. Siting and Exposure
- 3. Maintenance and Observer
- 4. Post-Analysis

Using one year of data two criteria are assessed:


- 1. Data availability: How complete is the data?
- 2. Timeliness: How fast is the data delivered?

A total of 526 instruments (mounted on 113 stations) were inspected by METAS from 2013 to July 2015:

Operator	2013	2014	2015	Total
MeteoSwiss	101	148	72	321
Partner	90	102	13	205
				526

Results: Overall for 526 instruments

Example 1 "Not Compliant": Temperature and Wind at PSI

0

Example 2 "Not Compliant": Rain, Wind and Radiation in Stabio

0

Example 3 "Not Compliant": Temperature at Weissfluhjoch

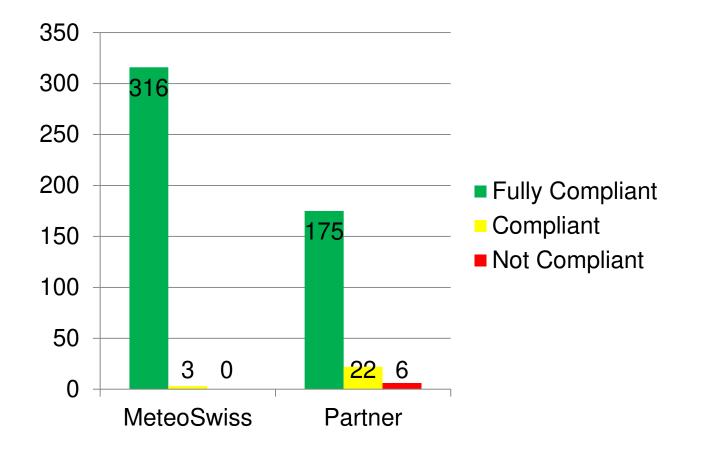
D

Example 4 "Fully Compliant"

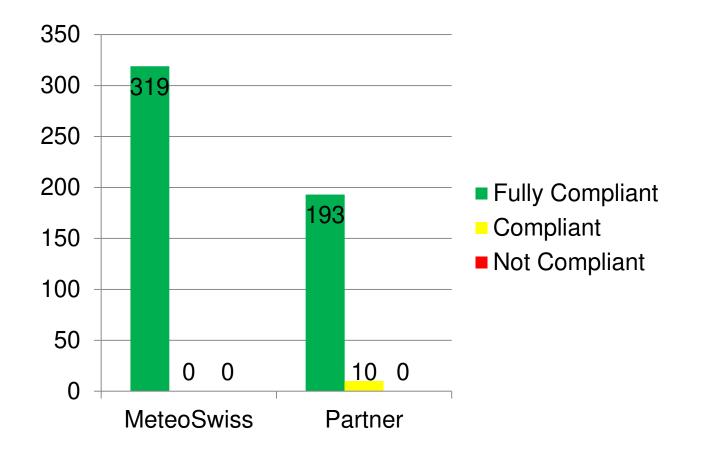
METEO-Cert - Acceptance Procedure for Automatic Weather Stations Joël Fisler, Marlen Kube, Bertrand Calpini (MeteoSwiss)

The acceptance procedure METEO-Cert...

- works! \rightarrow Meaning: It delivers meaningful results
- is objective and reproducible
- led to the improvement/relocation of MeteoGroup stations
- generates metadata that is stored in the MeteoSwiss
 DataWareHouse (DWH) and can be used by applications
- will be integrated in the MeteoSwiss data retrieve tools
- will be an important source of information for future generations if 5-year-cycle is kept up ^(C)

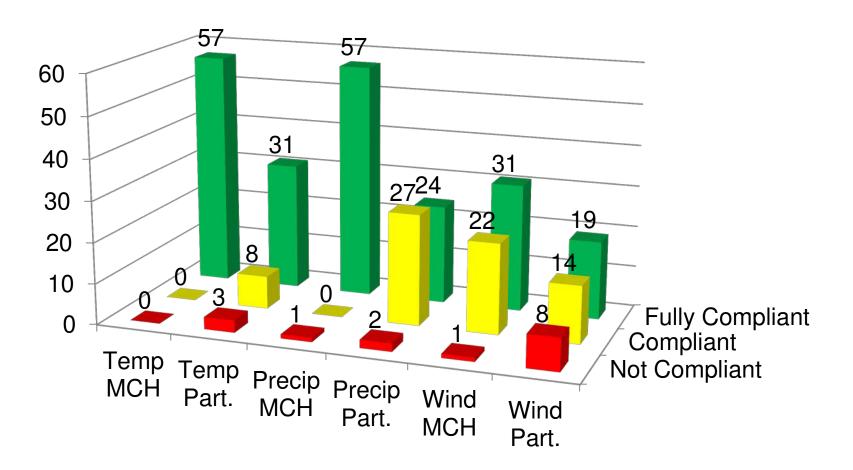

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz

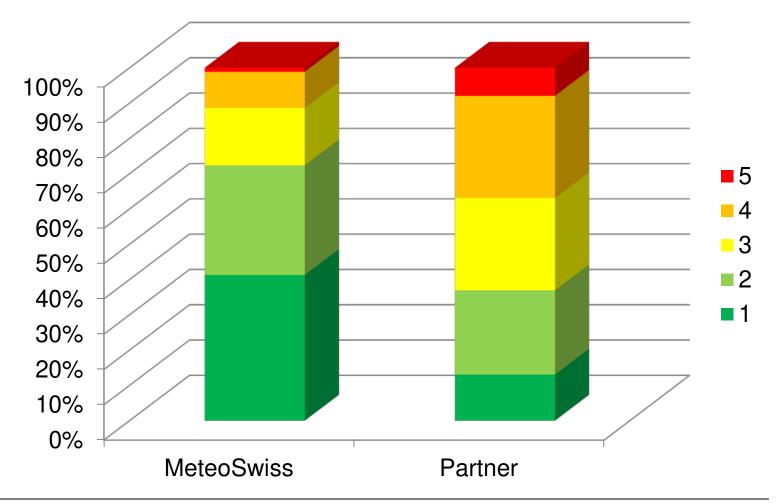

Appendix

Additional results

Results: Data availability

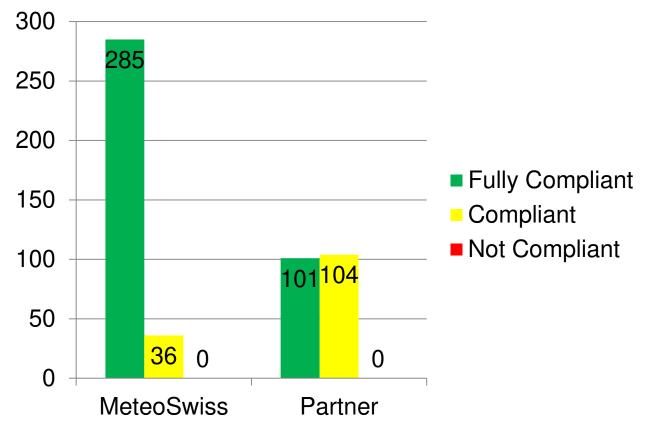


Results: Timeliness

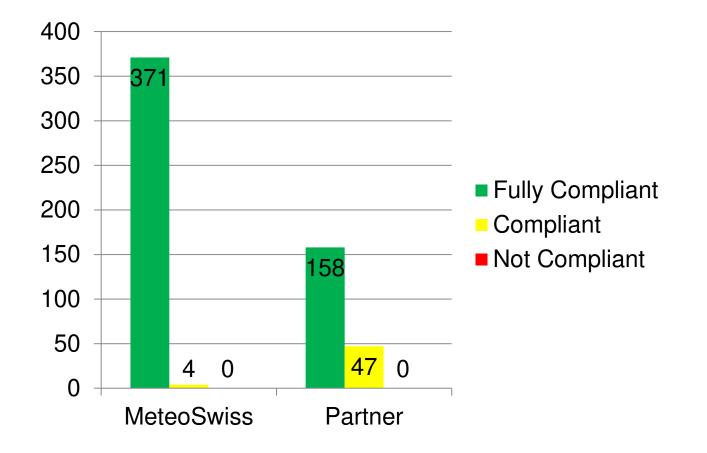


Results: Measurement Height

0



Results: CIMO Siting Classes


Results: Instrument accuracy (according to manufacturer)

J

But correct heating is sometimes an issue with partner stations!

Results: Maintenance and Observer

Austrian's Developments during the last two years!

Adler Silke, Auer Martin, Lipa Wolfgang

Albenberger Joachim, Fritz Alexandra, Fürst Hermine, Galavics Hermann, Jensen Michael, Lang Gerald, Lechner Wolfgang, Mandl Alexander, Rubin Verena, Teuschler Daniela, Zach-Hermann Susanne

Overview

Annual data report = Yearbook

- KSE Klima-Synop-Entry meteorological observation
- DCT Data Correction Tool historical data
 DCT
- AQUAS Austrian Quality Service online data
 AQUAS

28.10.2015 Folie 2

and the second

Old version:

- manual, many individual programs, very time consuming
- Excel VBA
- start of programs until whole datasets of all stations of a year were checked
- delay of two-three years

New version:

- runs automatically, only five minutes
- Python
- program runs twice a year or as necessary
- use data of all stations end level checked (typ=6 for 365 days)
- daily report, monthly report, annual report, phenological report
- currently data are available from 1992 until 2014

			-	1 Par 1	angles.			-	
	NG anstalt für ologie und Ge	eodynami	k				. E. Mich	The All	
	Aktuell	Wetter	Klima	Umwelt	Geophysik	Forschung	Produkte		Facebook
Klima aktuell	Klima / Klir	maübersichter	1. 1.					Wetter	warnungen
Klimaübersichten	Klimaül	bersicht	en						A and a
:: Jahrbuch	In dan Mi	maüborgiek	ton stallt d	a ZAMC a	ungowählte Det	ton mit Klimeh	ezug zur freien Verfüg	4	
:: Klimamittel					a second s		z, spezielle Gutachte		2000
:: Astronomische Information	10				d Services.				
Produkte und Services			Jah	rbuch				Mi	Do Fr Sa So
Klimaforschung		ANSTAL STA	1000				he Tages-, Monats- u	nd	mobile Version für Ihre Homepage
Informationsportal Klimawandel	1400	1855			-	-	Beobachtungs- und hnungen, mehr •••	Somb	ick-Observatorium
Messnetze									
News	A		11 miles	namittel					Contractor Inc. I store Inc.
Team und Kontakte		(12 -	1.1.1				tur, Niederschlag, Win	nd, 🖉 S	onnblick
uche		1 mm 244 4.1 1 (m 28 1 Um 13 7	5 43 7 21 1 34	oikung us	W. Von uber 200	Wessstationer	abrufen, mehr 🚥		
Website durchsucher		-	Hier	sind die ta		d Untergangsz	eiten von Sonne und I		ogie PhenoWatch
Erweiterte Suche		1 10	den	osterreich	schen Landesn	auptstadten al	ıfgelistet. mehr 🚥	ki 🛃	BUAND
			-1		Unser Klima	1	C	HISTAL	P
	P						-{{		
ie ZAMG ist eine orschungseinrichtung des	Minden	ergieguta	-htten	Buche	ACCOUNT OF	10	lettergutachten		
omwfw	Berechn	ung der erw produktion.	/artbaren	"Unser	Klima*, "Labor n* mehr •••	über den A	uskunft über vergange /etter mehr •••	ines	

www.zamg.ac.at/Klima/Klimaübersicht/Jahrbuch

F

G

Fo

Alle

28.10.2015 Folie 4

2014 🗸	Monatsauswertung -	Stationssuche	
 Jänner Februar März April Juni Juni Juli August September Oktober November Dezember 	Globalstrahlung Luftdruck und Bewölkung Lufttemperatur Luftfeuchte Niederschlag Wind Erdbodentemperatur Besondere Erscheinungen 5 cm Lufttemperatur Sonnenscheindauer	Burgenland Andau (T) Bad Tatzmannsdorf (T) Bernstein (T) Bruckneudorf (T) Eisenstadt/Nordost (T) Güssing (T) Kleinzicken (T) Lutzmannsburg (T) Mattersburg (T) Neusiedl/See (T) Rechnitz (T) Wörterberg (T) Niederösterreich Allentsteig (T)	•

TAWES (T): Teilautomatische Wetterstation Beobachtung (B): manuelle Klimabeobachtung (Bewölkung, Niederschlag, Schnee) Doppelte Einträge weisen auf Übergänge durch Stationsverlegung oder Sensorenumrüstung hin!

HTML Darstellung
 Excel CSV Datei
 PDF Datei

28.10.2015

Folie 5

HTMLformat

Stationsinformationen Wien Hohe Warte

Stationsname	Stationstyp	Bundesland	Geogr. Breite (°)	Geogr. Länge (°)	Höhe (m)	Aktiv seit	Lage (grob) - Lage (fein)
Wien Hohe Warte	Tawes	w	48.2486	16.3564	198	01 1993	Anhöhe - Ebene

2014 Wien Hohe Warte Niederschlag Niederschlag Sonnenscheind Besondere Erst Wind	202 000	Sta	tionsinform	ationen		
Parameter / Monat	ugust	September	Oktober	November	Dezember	Gesamtjahi
Monatssumme des Niederschlags (mm)	110	109	37	34	43	753
maximale 24h-Niederschlagssumme (mm)	40	30	12	14	10	62
maximale Tagesschneehöhe (cm)	0	0	0	0	6	6
Tag der maximalen Niederschlagssumme	23	11	17	7	1	

-

2014 Wien Hohe Warte Sonnenscheindauer

Stationsinformationen

Parameter / Monat	Jänner	Februar	März	April	Mai	Juni	Juli	August	Septe	
Monatssumme der Sonnenscheindauer (h)	62	87	218	203	231	304	268	216	15	ZAMO
Summe der Sonnenscheindauer (% der maximal möglichen)	24	32	61	52	51	67	58	51	4	Zentralanstalt fi Meteorologie un Geodynamik

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1																		
2	Monatsausw	ertung																
3																		
4																		
5	Station	Breite	Länge	Höhe	Lage (grob)	Lage (Fein)	Kapitel	Parameter	Jän.14	Feb.14	Mär.14	Apr.14	Mai.14	Jun.14	Jul.14	Aug.14	Sep.14	Okt.14
6	Wien Hohe V	48,2486	16,3564	198	Anhöhe	Ebene	Niederschlag	Monatssumr	8	21	12	66	189	33	91	110	109	37
7	Wien Hohe V	48,2486	16,3564	198	Anhöhe	Ebene	Niederschlag	maximale 24	4	6	5	17	62	16	25	40	30	12
8	Wien Hohe V	48,2486	16,3564	198	Anhöhe	Ebene	Niederschlag	maximale Ta	2	1	0	0	0	0	0	0	0	0
9	Wien Hohe V	48,2486	16,3564	198	Anhöhe	Ebene	Niederschlag	Tag der maxi	21	12	23	24	24	29	30	23	11	17
10	Wien Hohe V	48,2486	16,3564	198	Anhöhe	Ebene	Sonnenschei	Monatssumr	62	87	218	203	231	304	268	216	154	95
11	Wien Hohe V	48,2486	16,3564	198	Anhöhe	Ebene	Sonnenschei	Summe der S	24	32	61	52	51	67	58	51	42	29
12	Wien Hohe V	48,2486	16,3564	198	Anhöhe	Ebene	Besondere E	Tage mit Nie	2	5	4	10	12	4	11	9	7	7
13	Wien Hohe V	48,2486	16,3564	198	Anhöhe	Ebene	Besondere E	Tage mit Nie	0	0	0	2	6	1	3	4	5	1
14	Wien Hohe V	48,2486	16,3564	198	Anhöhe	Ebene	Besondere E	Tage mit Sch	3	0	0	0	0	0	0	0	0	0
15	Wien Hohe V	48,2486	16,3564	198	Anhöhe	Ebene	Besondere E	Tage mit Sch	1	0	0	0	0	0	0	0	0	0 -
		_Jahrbuch 🖉	2/								14							► I
Bere	eit 🞦															III II 100)% 😑	. 🕂 🗸

XLS-File or

PDF-File

Monatsauswertung

ZAMG Wien Hohe Warte

2014

	Niederschlag												
Parameter / Monat	Jänner	Februar	März	April	Mai	Juni	Juli	August	September	Oktober	November	Dezember	Jahr
Monatssumme des Niederschlags (mm)	8	21	12	66	189	33	91	110	109	37	34	43	753
maximale 24h-Niederschlagssumme (mm)	4	6	5	17	62	16	25	40	30	12	14	10	62
maximale Tagesschneehöhe (cm)	2	1	0	0	0	0	0	0	0	0	0	6	6
Tag der maximalen Niederschlagssumme	21	12	23	24	24	29	30	23	11	17	7	1	-

	Sonnenscheindauer												
Parameter / Monat	Jänner	Februar	März	April	Mai	Juni	Juli	August	September	Oktober	November	Dezember	Jahr
Monatssumme der Sonnenscheindauer (h)	62	87	218	203	231	304	268	216	154	95	55	75	1968
Summe der Sonnenscheindauer (% der maximal möglichen)	24	32	61	52	51	67	58	51	42	29	21	30	46

					Besonde	re Erscheinun	gen							
	Parameter / Monat	Jänner	Februar	März	April	Mai	Juni	Juli	August	September	Oktober	November	Dezember	Jahr
1	Tasa mit Niederseblas an 4 mm	2	5	h	40	42	4	44	0	7	7	4	44	000

ZAMG Zentralanstalt für Meteorologie und Geodynamik

KSE: climatological observation

requirements

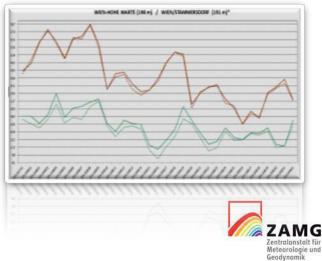
- Online form for climatological observations
- Observation pre-check
 - Inner consistency
 - Consistency with measurements
- Feedback for corrections or confirmations
- Substitution of paper reports

KSE: climatological observation

Example: checking for inner consistency

Bewölkung	i) H
9: 9/10 • 2: Hoch •	
Wetter zum Termin	i H
Fehler 0119: Sichtweite (I): 10 km - Wetter z.T. (I): Erwartet: kein Nebel, Gemeldet: 🧮	
Termin I Eingabe	
Sicht zum Termin	(i) <u>H</u>
Fehler 0119: Sichtweite (I): 10 km - Wetter z.T. (I): Erwartet: kein Nebel, Gemeldet: 🧮	
Termin I [km] 10 Eingabe	
Handmessung Niederschlag	́і Н
Termin I [mm] Eingabe "Niederschlagsart" auswählen 🔹	
Schnee	<u>i</u> H
insgesamt [cm] Eingabe neu [cm] Eingabe	
Erdbodenzustand	(i) H
"Erdbodenzustand I" auswählen 🗸	

Austrian Development



DCT

DATA CORRECTION TOOL

tmin	erdmin	t7	t14
-72	-79	-70	-20
-108	A# Fehler:	104	-40
-134	F07 tm	in > t7	-69
-80	Ditte la	and the	-88
-117	~ Bitte ko	rrigiereni	-85
-103	-101	-101	-67
-131	-134	-129	-80
-111	-110	-110	-89
-111	-124	-110	-53
-111	-124	-110	-53
-111	-110	-110	

DCT – Data Correction Tool

- Development started November 2012 -> operational since November 2013
- database-editor for checking offline data (correct hourly and daily values)
- makes realtime calculations (monthly values)
- control- and informationsystem
- displays graphics and station map
- includes station quality control
- check and learn control
- 130 checking criteria separated in 6 processes (completeness check, climatological check, temporal consistency check, inner consistency check, spatial consistency check, statistical check)
- oberserved data also be checked with DCT

28.10.2015 10 Austrian Development

DCT – Data CorrectionTool

4 1 1

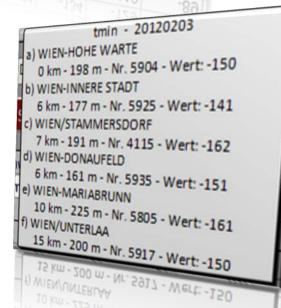
Abfrage

Stationsqualität

Prüfen & Lernen

Einstellur

ngen


Update Info KSE Import R Log Datei K3 K1 Tawes* Std ? 6.1 DCT ~ Stationen LANGENLOIS 1-М- Т-J- M- T-1 2 3 4 5 6 ABCDV Entfemen Diagramm ~ ~ Station: Datum: Temp к Ε 20150601 🗸 -M N Administrator QF Nied Elemente Laden Prüfen Speichern D R4 Ζ 207 m Aktiv ~ J+ M+ T+ User: Adler J+ M+ T+ Ab S Schnee fr Qualitäts-Flags Vollbild Meldungen 🔽 Druck Zeige Änderungen Enter -> dampf07 dampf14 dampf19 dampfmit bew07 m istnr datum version tmax tmin erdmin t7 t14 t19 t rel07 rel14 rel19 rel typ 20150506 (de): nied07a nied07 nied19 nied19a nied datum nieda Langenlois 11075 Der Parameter m -1 wird ab 06-May-2015 03:20h wieder eingeblendet 20150506 (la): Langenlois rr ab 06-May-2015 00:30h Fehlwerte - nachrinnen -1 -1 X Aktueller Änderungsverlauf: -1 -1 >0506< -1 nied07 am 06.05.2015 -1 -1 -1 - Galavics 17.06.2015 - 141 -1 17.06.2015 - Albenberger -1 -1 -1 Original: - 9999 - Daten Wiederholen Abbrechen 1/0 Ω

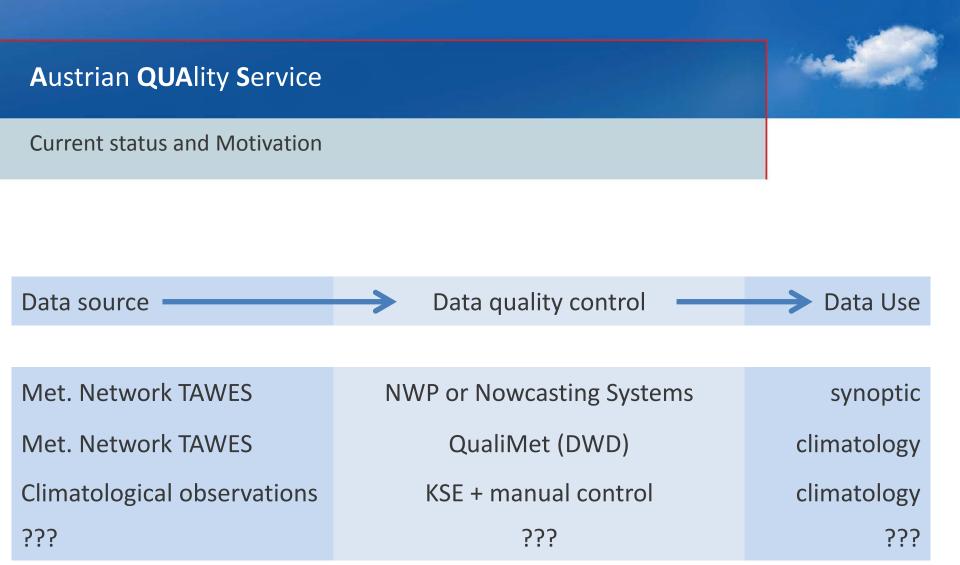
28.10.2015 Folie 11

• DCT – Data Correction Tool

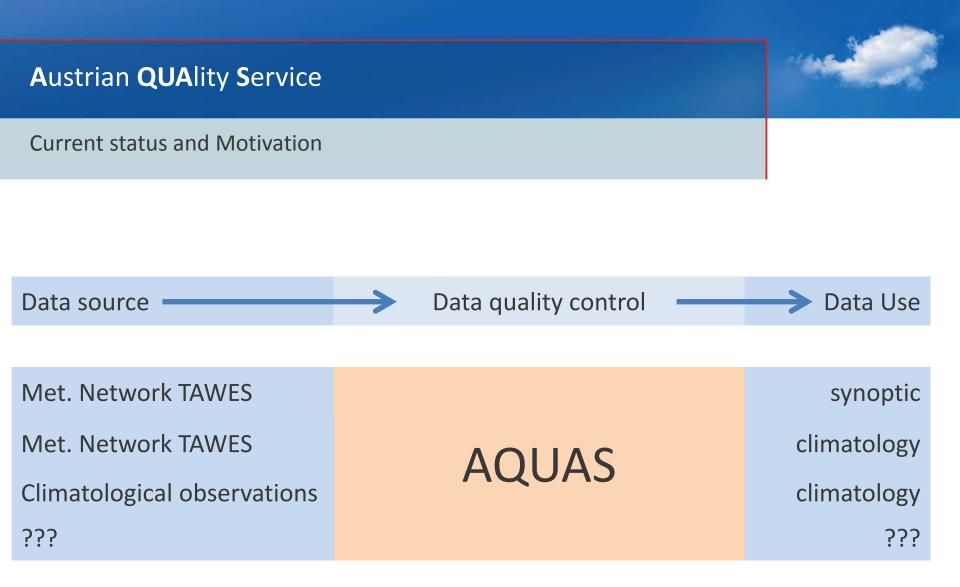
tmin	erdmin	t7	t14		
-72	-79	-70	-20		
-108	A# Fehler:	104	-40		
-134	F07 tmi	n > t7	-69		
-80	Ditta luc		-88		
-117	~ Bitte kor	rigieren!	-85		
-103	-101	-101			
-131	-134	-129	-67		
-111	-110		-80		
-111	-124	-110	-89		
-111	the second s	-110			
-111	-124	-110	-53		
-121	-110	-110	-53		

- failures and warnings
- Extensive description of errors
- notification of the values of neighbourhood
- shows relationship between error value and other values
- shows detailed information of the parameter
- displays the history of the failure value

tmin	erdmin	t7	t14
-72	-79	-70	-20
-108	-116	-104	-40
-134	-141	-133	-69
-80	-153	-150	-88
-117	-118	-116	-85
-103	-101	-101	-67
-131	-134	-129	
-111	-110	-110	-80
-111	-124	-110	-89
-111	-124		-53
-111	-110	-110	-53
	-134	-110	-89



DCT - station quality control

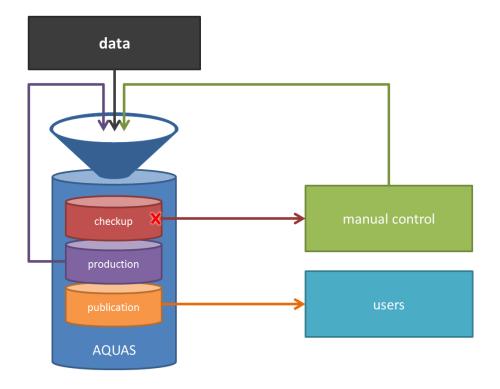


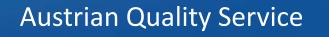
	Tir/Vbg - 201504 Bearbeiter					D/	ATEN BEWERTUN								JN	NG													
Stationsnummer	Name	Bund	Bearbeiter / Region	Qualitäts-Flags (Typ)	DCT geprüft (ab 2015)	Anzahl Daten	Anzahl T	Anzahl Bew	5 cm Erdbodentemp.	Temperatur	Relative Feuchte	Sichtweite	Bewölkung	Windgeschwindigkeit	Windrichtung	manueller Niederschlag	Niederschlagsart	Nied. Zusatzbeob.	autorn. Niederschlag	Schneehöhe	Neuschnee	Erdbodenzustand	Druck	Zusatzbeobachtungen	Sonnenscheindauer	Globalstrahlung	Diffusstrahlung	Verdunstung	Bewertung
8805	ACHENKIRCH	1	Tirol	6	Ε	30	30	30	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3	3	3	0			2,94
12015	ALPBACH	1	Tirol	5		30	30			3	3			3	3				3				3		3	3			3,00
12016	ALPBACH	1	Tirol	5		30		0				2	Ah	eoba	chte	t nic	ht m	ehr		3	3	2		2					2,22
14801	BRENNER	1	Tirol	2		30		0				1	1 _n	euer	B. g	esuc	ht	iem .		1	1	1		1					1,00
14802	BRENNER	1	Tirol	6	Е	30	30	- 25		3	3								В				3		3	3			3,00
17320	BRUNNENKOGEL	1	Tirol	5		30	30			3	3								D										3,00
11602	EHRWALD	1	Tirol	5		30		30				3	3-			2	5	5		3	3	2		3					2,78
11603	EHRWALD	1	Tirol	5		30	30			3	3			3	3				3				3		3	0			3,00
17002	GALTUER	1	Tirol	5		30	30	- 995 775		3	3			3	3]	3				3		3	0			3,00
17003	GALTUER	1	Tirol	5		30		30				3	3			2	3	3		3	3	3		3					2,89
14305	GALZIG	1	Tirol	6	Е	30	30	30	0	3	3	2	2	3	3		3		3	3	3		3		3	0			2,83
15005	GERLOS/DURLASSBODEN (MT)	1	Tirol	5		30	30			3	3								3										3,00
12215	HAHNENKAMM-EHRENBACHHOEHE	1	Tirol	6	Е	30	30			3	3			3	3			1	1	3	3		3		3	0			2,78
14602	HAIMING	1	Tirol	5		30		30				3	3			3	3	3		3	3	2		2					2,78
14603	HAIMING	1	Tirol	5		30	30	- 20	3	3	3			3	3				3				3		3	0			3,00
14912	HINTERTUX (OE3)	1	Tirol	5		30	30		0	3	3			3	3				3						3				3,00
12351	HOCHFILZEN	1	Tirol	5		30	30	- 20		3	3			3	3				3				3		3	0			3,00
12352	HOCHFILZEN	1	Tirol	5		30										3	3			3	3								3,00
11401	HOLZGAU	1	Tirol	5		30		30				3	3			2	3	3		3	3	2		3					2,78
11402	HOLZGAU	1	Tirol	5		30	30		3	3	3			3	3				3				3		3	0			3,00
14512	IMST	1	Tirol	5		30		30				3	3			3	3	3		0	0	2	1	2					2,71
14513	IMST	1	Tirol	5		30	30		3	3	3			3	3				3				3		3	0			3,00
11800	INNSBRUCK-FLUGPLATZ	1	Tirol	5		30		30				3	3			3	3	3		3	3	3		3					3,00
11804	INNSBRUCK-FLUGPLATZ	1	Tirol	5		30	30	30	3	3	3			3	3				3				3		3	0			3,00
11803	INNSBRUCK-UNIV.	1	Tirol	5		30	30	30	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3	0			2,94
tationsqualität	/ Prüfen & Lernen / Einstellungen / 🧐	/					. — т									- 7													

Austrian Quality Service

New requirements

- Real-time testing
- Arbitrary data structures (non-standard networks)
- Adaptable check-ups
- Traceable and reversible data changes
- Centralized testing
- Distributed Correction (local experts)
- Web editor for manual data corrections


Solution for a small NMS with decreasing human resources

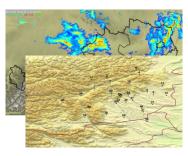

Austrian Quality Service

System specifications

- data base: PostgreSQL
- Kernel: C++
- check-up: PYTHON3 functions
- production: PYTHON3 functions
- manual control: play! framework

timetable

- 2012 Requirements analysis, System specifications
- 2014 Prototype
- 2015 Prototype enhancements
- 2016 Beta Testing, Configuration
- 2017 Operational Service



Austrian Quality Service

web editor (work in progress)

✓ Datum	RR [mm] Hirschenkogel	RRM [bool] Hirschenkogel	
10.10.2015 15:06	0.0	0	
10.10.2015 15:07	0.0	0	
10.10.2015 15:08	0.1	0	
10.10.2015 15:09	0.0	0	
10.10.2015 15:10	0.0	0	
10.10.2015 15:11	0.0	0	
10.10.2015 15:12	0.0	0	
10.10.2015 15:13	0.0	0	
10.10.2015 15:14	0.0	0	
10.10.2015 15:15	0.0	0	
10.10.2015 15:16	0.0	0	
10.10.2015 15:17	0.0	0	
10.10.2015 15:18	0.0	0	
10.10.2015 15:19	0.0	0	
< ·			P.

- Multi window elements:
 - Data tables
 - Data time series
 - Data maps
 - Radar, Satellite, ...
- Synchronized display

keep it small & simple

Outlook

28.10.2015 Folie 20

AQUAS:

- 2016 Beta Testing, Configuration
- 2017 Operational Service

Meta Data:

• Consolidation of meta data

Climate DataRescue:

• step by step

Thanks for your attention!

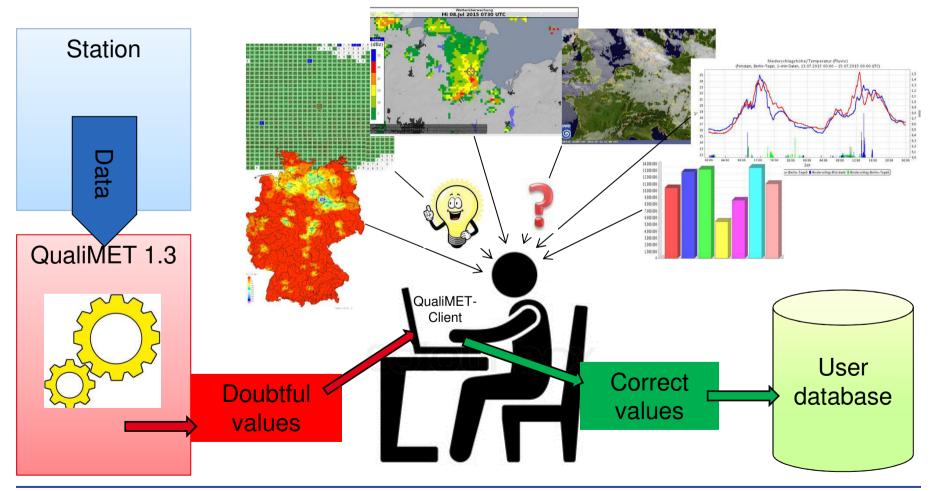
The new Quality Control System of Deutscher Wetterdienst

Reinhard Spengler Deutscher Wetterdienst Department Observing Networks and Data Quality Assurance of Meteorological Data

Michendorfer Chaussee 23 D-14473 Potsdam Tel.: +49 (0)69 8062-5200 E-mail: <u>reinhard.spengler@dwd.de</u>

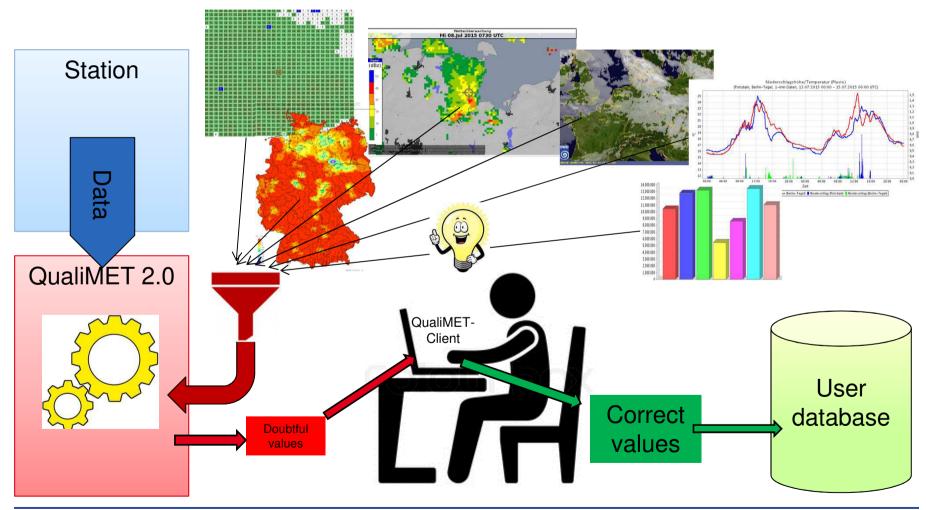
Overview

- 1. Background of planning and creating QualiMET 2.0
- 2. Difference between QualiMET 1.3 and QualiMET 2.0
- 3. Decision tree & usage of remote sensing data / nowcasting data
- 4. Calculation of climatological values
- 5. Co-operation with other NMSs



Background of planning and creating QualiMET 2.0

- → The previous system has been in operation for about 15 years.
- → We had many human resources for visual observations and for operating interactive QC procedures.
 → DWD decided to run a fully automated observing network as of 2020.
- → Interactive QC is currently distributed to seven regional offices
 → Future: one central QC group
- → Human QC takes to much time and is often biased by subjective judgement.



The previous system QualiMET 1.3

The new system QualiMET 2.0

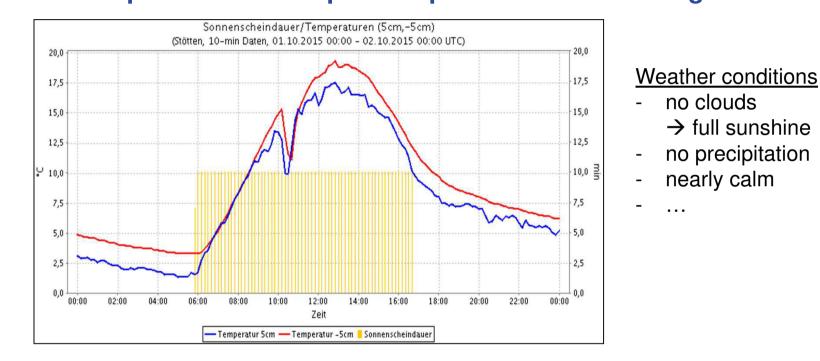
Decision tree & usage of remote sensing / nwc data (1/6)

→ To be continued: 4 levels of Quality Control

- 1. Real-time at station site (fully automated)
- 2. Real-time at central office (24/7, semi-automated)
- 3. Non real-time at central office (\rightarrow max. 3 days)
- 4. Climatological Quality Control (\rightarrow 1 year)

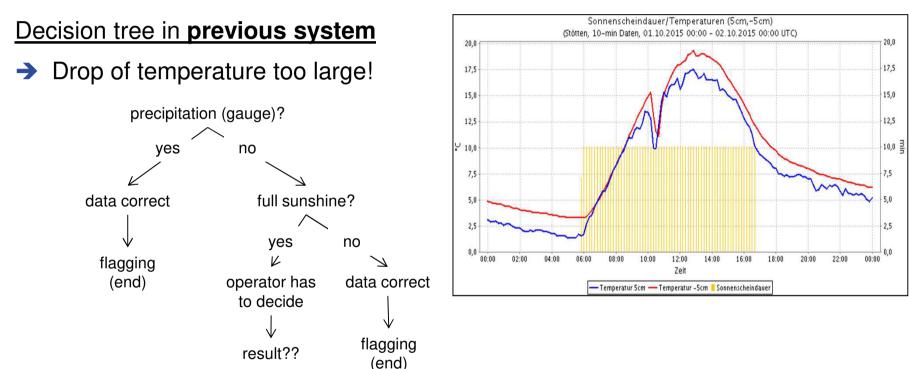
To be continued: 5 steps of Quality Control

- 1. Completeness, availability
- 2. Climatological limits
- 3. Temporal consistency
- 4. Internal consistency
- 5. Spatial consistency

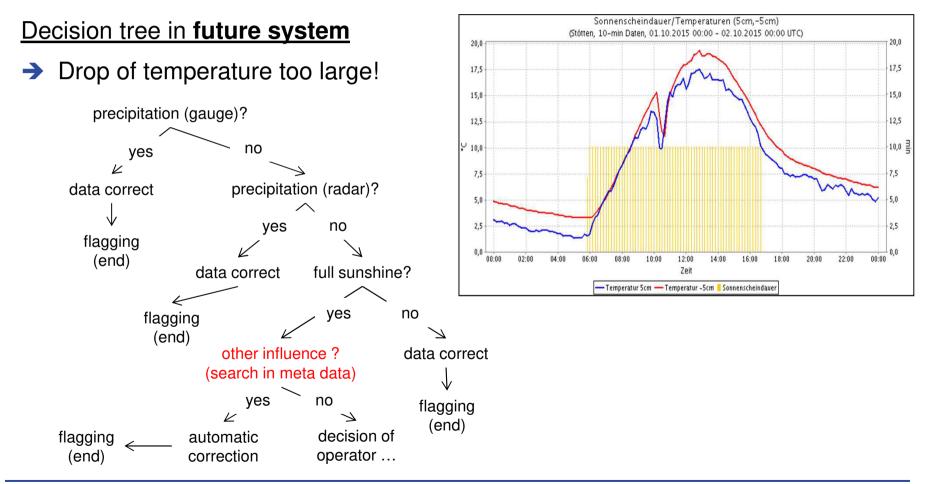


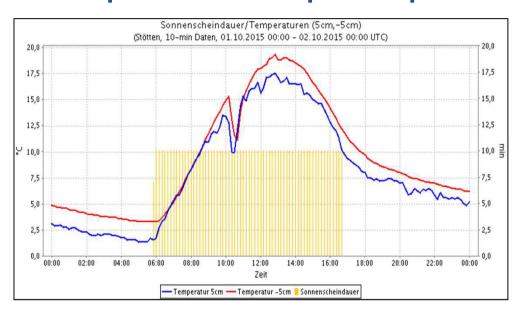
Decision tree & usage of remote sensing / nwc data (2/6)

- Usage of satellite data (cloud cover, cloud type, cloud mask, radiation, sunshine duration, etc.) at levels 2, 3 and 4 to check hourly, daily and monthly values
 - to decide if available data is acceptable
 - to get substitute data to correct inaccurate data
 - to get substitute data to close gaps in time series
- → Usage of radar products at levels 2 and 3 to check hourly and daily values
 - in the same way as satellite data ...
- → Usage of station site classification (CIMO) and other metadata
 - \rightarrow example on following slide


Decision tree & usage of remote sensing / nwc data (3/6) Example: sudden drop in temperature 5cm above ground

Decision tree & usage of remote sensing / nwc data (4/6)

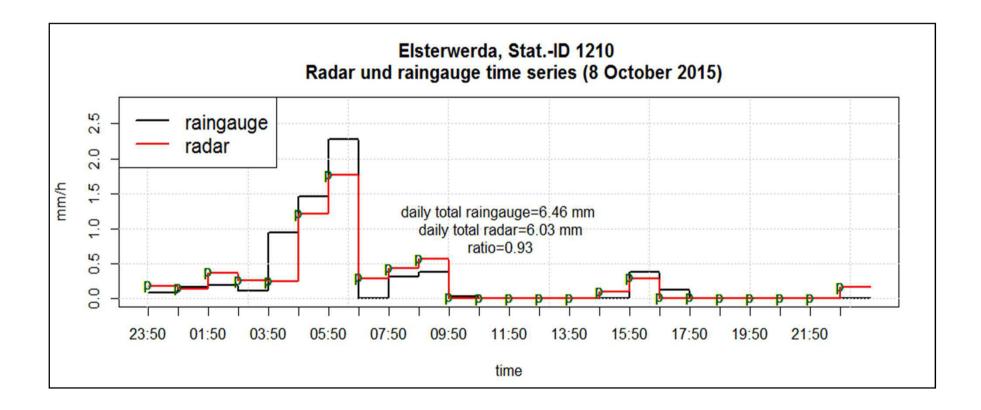

- Example: sudden drop in temperature 5cm above ground


Decision tree & usage of remote sensing / nwc data (5/6)

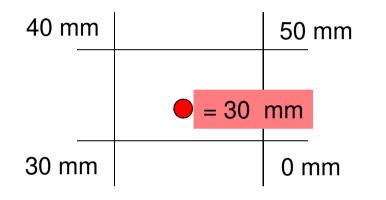
- Example: sudden drop in temperature 5cm above ground

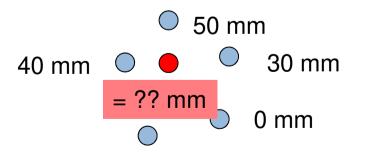
Decision tree & usage of remote sensing / nwc data (6/6) Example: sudden drop in temperature 5cm above ground

<u>Result</u>


- Drop in temperature was caused bei shadow of a radio tower (see picture)

Remote sensing / model data


- Check-algorithms for precipitation by using radar products


Remote sensing / model data

- spatial Check of daily precipitation with a new linear model

- Information from neighboring station (considering dataset of the last 10 years)
- Search / identify of suitable predictors

 Interpolation of Data into a grid of 1km

Results from Sensor calibration checks

- should these data be considered in QA of time series?
- Maintanance interval of wind-sensor is 12 months \rightarrow
- The re-calibration check detects an non-acceptable deviation in wind-speed
- \rightarrow How should we deal with such a result relating to the time series, especially of climatological data ???

Calculation of climatological values

- \rightarrow All climate data are calculated using data sets from the synoptic stations.
- This means that QC is based on data with the highest possible temporal \rightarrow resolution: 1-minute data, 10-minute data, ...
- → Any change in high temporal resolution data will automatically lead to adaptation of the climate data (possible for up to 30 days back)
- → A quality flag is assigned to each measurement value. During the calculation of climate data, this information is passed on to the condensed values.
- \rightarrow The concept of data condensation and quality flagging will be expanded until 2017 to be applicable to the new procedures by using remote sensing and model data.
- \rightarrow In future, all users of the data will see whether the values are original data or have been corrected or added.

Co-operation with other NMSs

- → The new developments to the method and software require intense coordination, also at international level.
- ➔ For this reason, we have intensified our contacts to MeteoSwiss and ZAMG during 2014.
- ➔ I would be very pleased if we could work together on improving our procedures for the quality control of meteorological data and data management.

Thank you very much for your attention

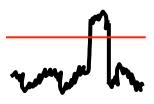
Are there any

questions ?

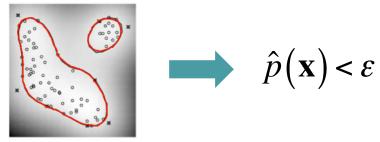
Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss


Three Information Sources for Quality Control

Christian Sigg – <u>christian.sigg@meteoswiss.ch</u> Valentin Knechtl – <u>valentin.knechtl@meteoswiss.ch</u> 10th EUMETNET Data Management Workshop, 2015

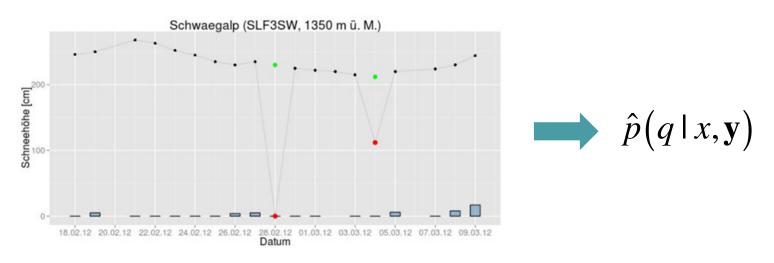

In a Nutshell

We build QC tests from three sources of information:

 Relative frequency of occurrence Principle: "Rough errors are rare" Classical rule: magnitude limit tests

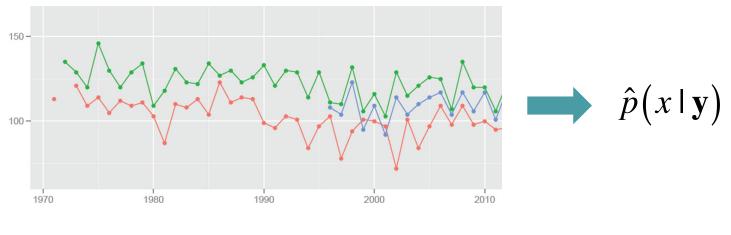
Model: outlier detection based on density estimation

Schölkopf et al. (2001)


+ efficient and low FDR for p(x) or p(x) – high FDR for p(x,y)

Three Information Sources for Quality Control Christian Sigg and Valentin Knechtl

2. Historical treatment


Principle: "Model imitates expert" Model: classifier that predicts discrete quality flags

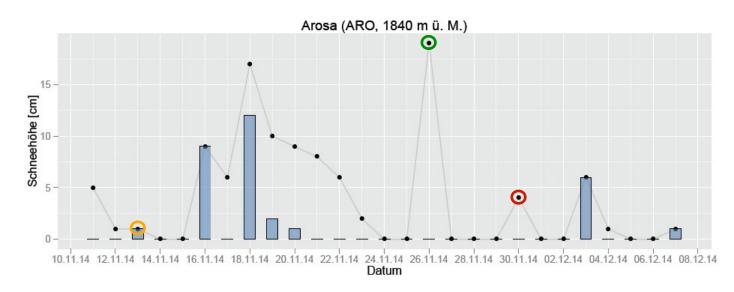
- + Identifies erroneous measurements
- Label scarcity problem

3. Relationship to other measurements Principle: "Errors deviate from prediction" Model: predictive model based on context

no labels needederroneous or missing context

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation


Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Evaluating a QC System

Poster: V. Knechtl, D. van Geijtenbeek and C. Sigg "A Quantitative Approach to Optimize the Quality Control System for Surface Data at MeteoSwiss"

Measuring QC System Performance

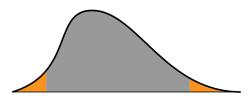
	Value not flagged	Value flagged
Value correct	True negative (TN)	False positive (FP)
Value not correct	False negative (FN)	True positive (TP)

Trade-off necessary between benefit (TP) and cost (FP + FN) **False discovery rate (FDR):** *E*[*FP/(FP+TP)*]

D

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation


Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

1. Relative Frequency of Occurrence

"Rough errors are rare"

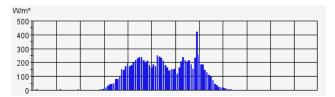
• Outlier Detection: p(x)

Our distributions are typically unimodal -> lower and upper limits:

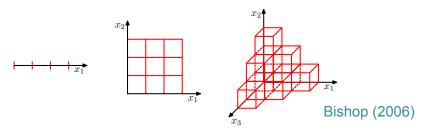
"Hard" limits:

- Nonsensical: negative precipitation measurements
- Physically impossible: 2m surface temperature > 50 °C

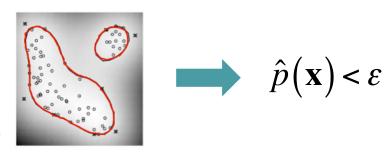
"Soft" limits:


- Monthly limits based on climatology of station
- Derived from inter-quantile range

Both achieve a low FDR, but have significant number of FNs



Inherently multi-dimensional observations



Time series data

Multi-variate density estimation is hard due to the "curse of dimensionality" Bellman (1961)

One-class classification (OCC) based on SVM Schölkopf et al. (2001)

Schölkopf et al. (2001)

$p(\mathbf{x})$ Example: Regular Case

Margin: 0.30

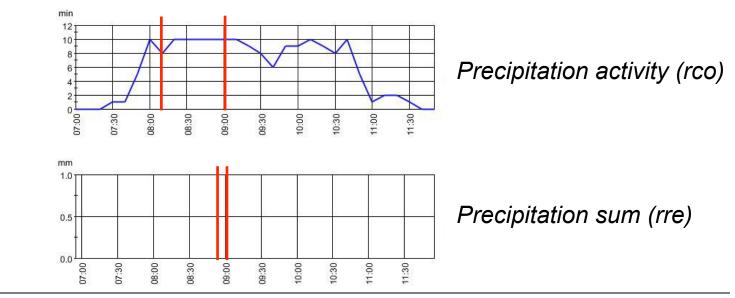
Margin: 0.13

Margin: 0

$p(\mathbf{x})$ Example: Outliers

Margin: -0.42

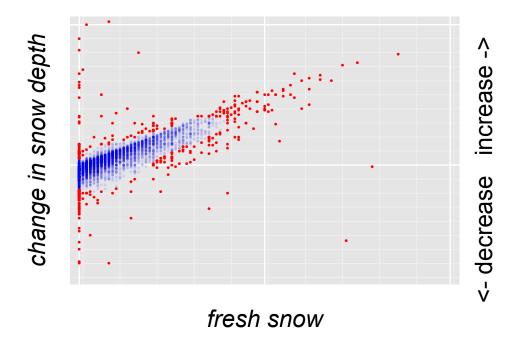
Margin: -0.14


Margin: -0.11

• Outlier Detection: *p(x,y)*

Rule based: Consistency of different but related measurements

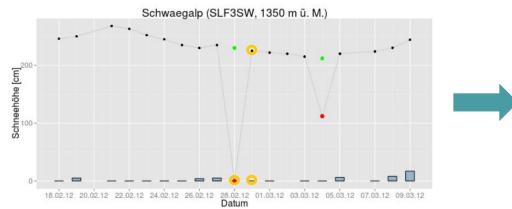
$$\sum_{60 \min} rco > 50 \min \wedge rre < 0.1 \,\mathrm{mm}$$

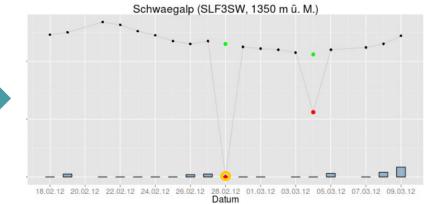

Rule seems plausible, but reality is more complex:

Three Information Sources for Quality Control Christian Sigg and Valentin Knechtl

• Outlier Detection: *p(x,y)*

Model based: one-class classification of daily change in snow depth and fresh snow (2 years, 109 stations)





Both consistency rules and density estimators flag all involved values and produce a QC case.

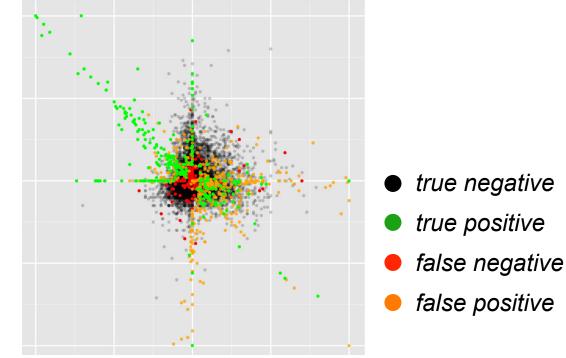
Automatic QC
 Treatment of cases

Consistency tests were developed for this scenario

Automatic QC has to identify the erroneous measurement

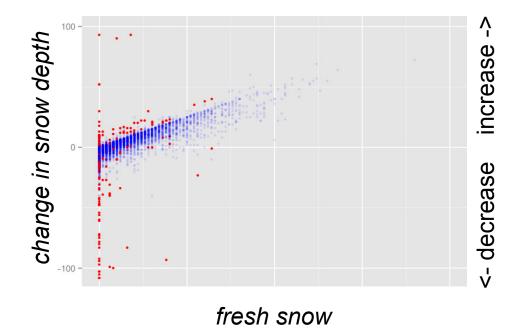
Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation


Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

2. Historical Treatment

"Model imitates expert"


Bi-Classification: p(q|x,y)

SVM classifier Cristiannini & Shawe-Taylor (2000) trained on labels provided by the Institute for Snow and Avalanche Research (SLF):

Bi-Classification: *p(q|x,y)*

Applied to the same dataset as before:

SVM correctly identifies regions of erroneous measurements.

Label Scarcity Problem

Data is plentiful, but expert labels are scarce.

Two years of labels for snow depth and fresh snow are

- Enough to train a generic model with a good FDR
- Not enough to train station-specific models

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

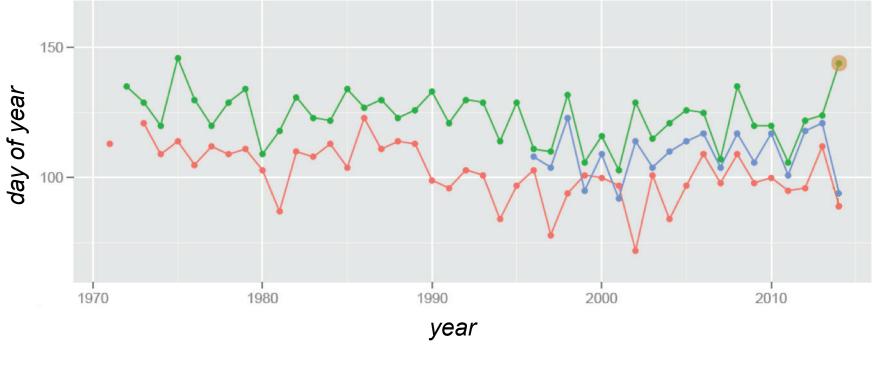
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

3. Relationship to other measurements

"Errors deviate from prediction"

Prediction: $p(x|\mathbf{y})$

Regression: point-wise best estimate, e.g. E[x|y]

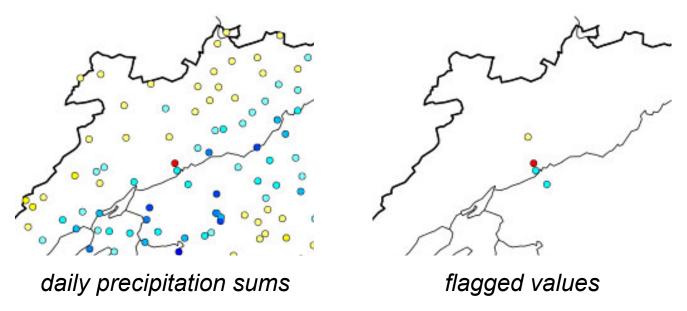

1. Train regression model based on context **y**

$$x \approx f(\mathbf{y})$$

2. Flag based on difference to observation $\varepsilon < x - f(\mathbf{y}) < \varepsilon'$

Horse chestnut tree at station "Villnachern":

leaf unfolding start of flowering full flowering


Choice of Context

Trade-off:

- Predictiveness: which measurements show a strong statistical relationship
- Timeliness: which measurements are available at the time of measurement
- Robustness: data problems in context impair prediction
- -> Employ multiple models:
- 1. Based on climatology only
- 2. Based on context available at time of measurement
- 3. Based on most predictive context

Data Problems with Context

- How to deal with missing values in context:
 - Skip test entierely
 - Impute missing predictor
- Errors in context generate FPs:

Errors in the Context

Three approaches to deal with errors in the context:

1. Split the context Gandin (1988)

$$x \approx f(y, z) \rightarrow x \approx g(y), x \approx h(z)$$

x can be validated either by y or z:

- + An error in either predictor can be detected
- predictors are treated as independent
 - -> loss of power for the test

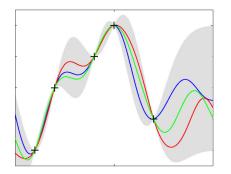
Errors in the Context

2. Train OCC for the predictors

$$\hat{p}(y,z)$$

Apply test if the predictors are accepted by the OCC

$$\hat{p}(y,z) > \delta \longrightarrow \varepsilon < x - f(y,z) < \varepsilon'$$


+/- OCC is a separate step, independent of the regression model

Errors in the Context

3. Predict the full distribution instead of a point estimate:

$$\mathbf{E}[x \mid y, z] \rightarrow \hat{p}(x \mid y, z)$$

For example using Gaussian process regression

Rasmussen and Williams (2006)

- + Posterior variance is high for unlikely (*y*,*z*)
- + Single integrated model
- Model complexity

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Conclusions

We use three information sources for quality control:

- 1. Relative frequency of occurrence: density estimation + low FDR for p(x) or p(x) – high FDR for p(x,y)
- 2. Historical treatment: classification
 + identifies erroneous measurement label scarcity
- 3. Relationship to other measurement: regression
 + no labels needed ! erroneous or missing context

Thank you for your attention.

Bibliography

Bellman, R. (1961). Adaptive Control Processes: A Guided Tour. Princeton University Press.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Cristianini, N., & Shawe-Taylor, J. (2000). *An introduction to support vector machines and other kernelbased learning methods.* Cambridge University Press.

Gandin, L. S. (1988). *Complex Quality Control of Meteorological Observations*. Monthly Weather Review, 116(5), 1137-1156.

Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001). *Estimating the Support of a High-Dimensional Distribution*. Neural Computation, 13(7), 1443-1471.

Rasmussen, C. E. & Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT Press.

[⊅] UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Identifying and attributing common data quality problems: temperature and precipitation observations in Bolivia and Peru

S. Hunziker ¹, S. Gubler ² J. Calle ³, I. Moreno ³, M. Andrade ³, F. Velarde ³, L. Ticona ³, G. Carrasco ⁴, Y. Castellón ⁴, C. Oria Rojas ⁵, S. Brönnimann ¹, M. Croci-Maspoli ², T. Konzelmann ², M. Rohrer ²

¹ Oeschger Centre for Climate Change Research and Institute of Geography, University of Bern, Bern, Switzerland

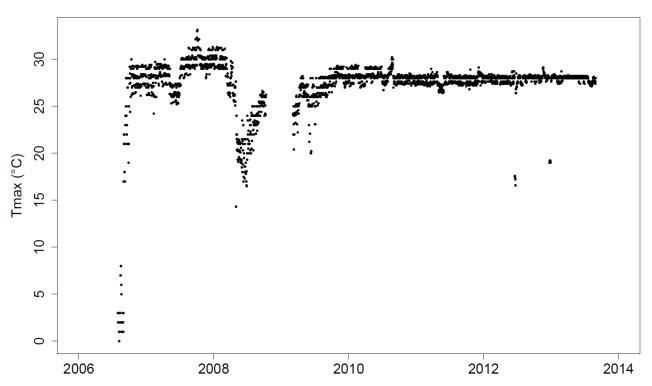
² Federal Office of Meteorology and Climatology MeteoSwiss, Zürich, Switzerland

³ Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia

⁴ Servicio Nacional de Meteorología e Hidrología de Bolivia, SENAMHI

⁵ Servicio Nacional de Meteorología e Hidrología del Perú, SENAMHI

- Data availability
- Sparse station network
- Metadata is fractional or missing
- Often severe data quality problems



OESCHGER CENTRE CLIMATE CHANGE RESEARCH

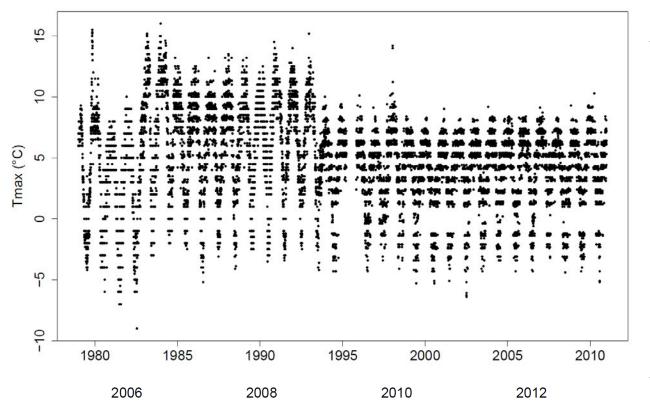
 u^{b}

- Data availability
- Sparse station network
- Metadata is frac
- Often severe da

INCAPAMPA

D UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH


 u^{b}

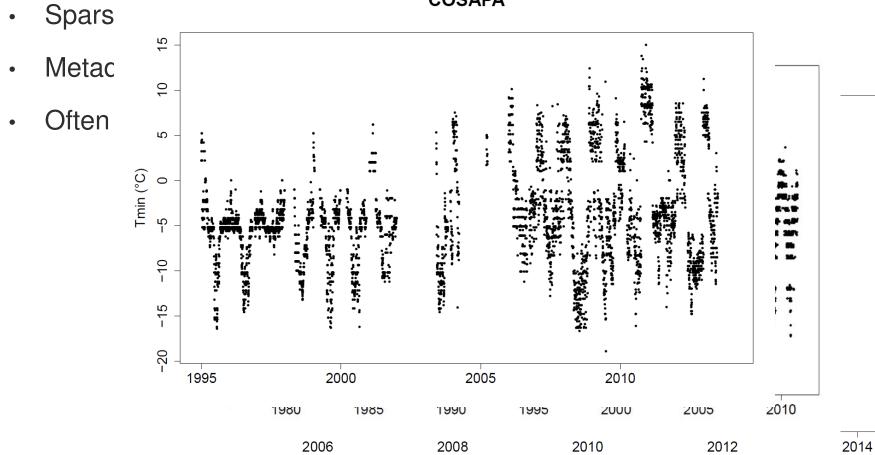
 u^{b}

D UNIVERSITÄT BERN

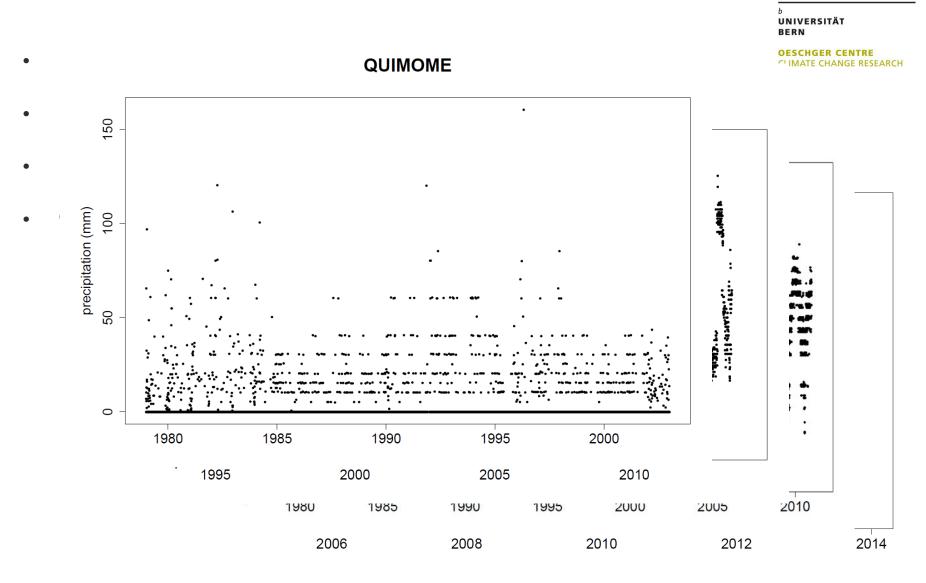
OESCHGER CENTRE CLIMATE CHANGE RESEARCH

- Data availability
- Sparse stati
- Metadata is
- Often sever

TINQUIPAYA

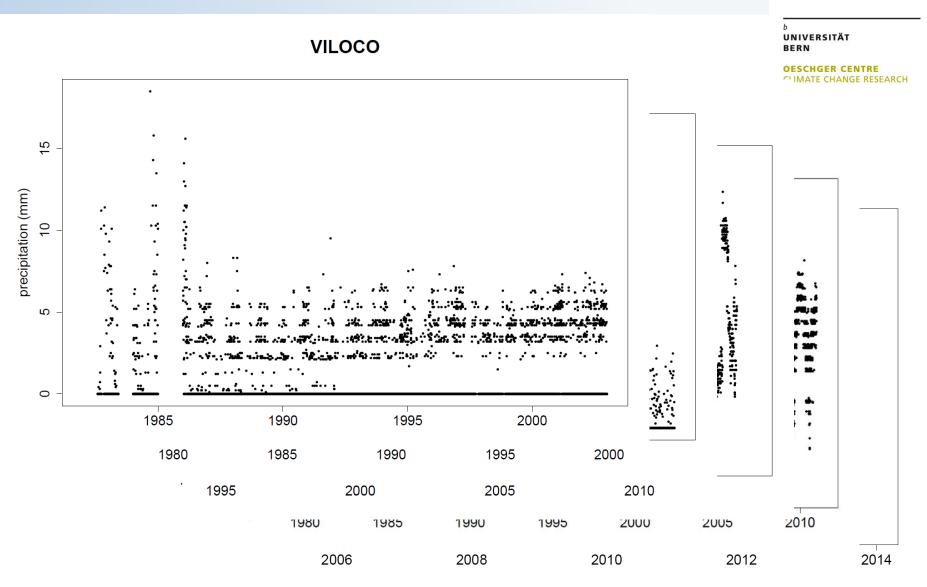

2014

 u^{b}


UNIVERSITÄT BERN

OESCHGER CENTRE

Data availability



COSAPA

Challenges

Challenges

- Data availability
- Sparse station network
- Metadata is fractional or missing
- Often severe data quality problems

Frequently found errors:

- missing temperature intervals
- reduction of variability
- rounding inconstancies
- > 20mm precipitation cut
- missing low precipitation values
- untagged rainfall accumulations
- transcription errors

UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

 $u^{\scriptscriptstyle b}$

Challenges

- Data availability
- Sparse station network
- Metadata is fractional or missing
- Often severe data quality problems

Frequently found errors:

- missing temperature intervals
- reduction of variability
- rounding inconstancies
- > 20mm precipitation cut
- > missing low precipitation values
- > untagged rainfall accumulations
- transcription errors

UNIVERSITÄT BERN

D UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Station visits to

- 1. report and assess the actual state of the station
- 2. reconstruct the station history
- 3. detect sources of data errors

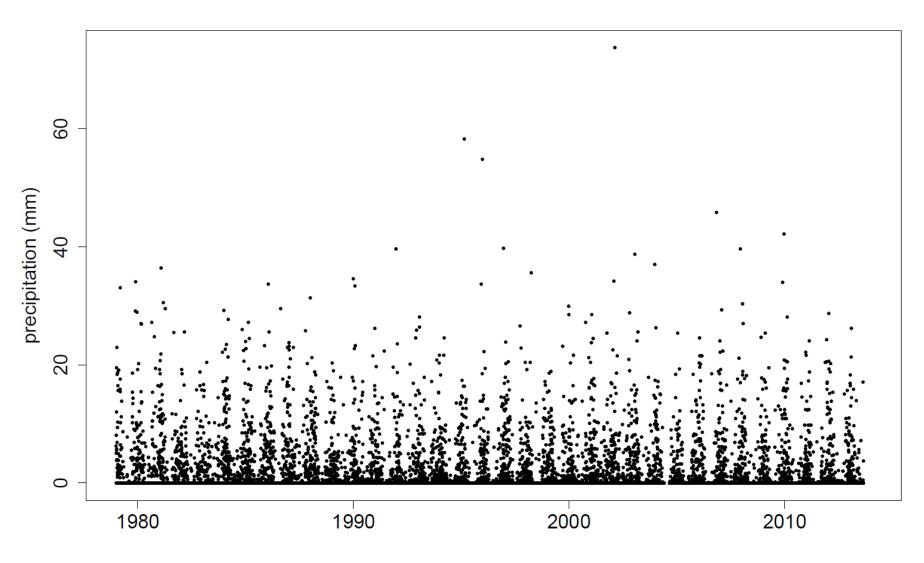
Ь UNIVERSITÄT BERN

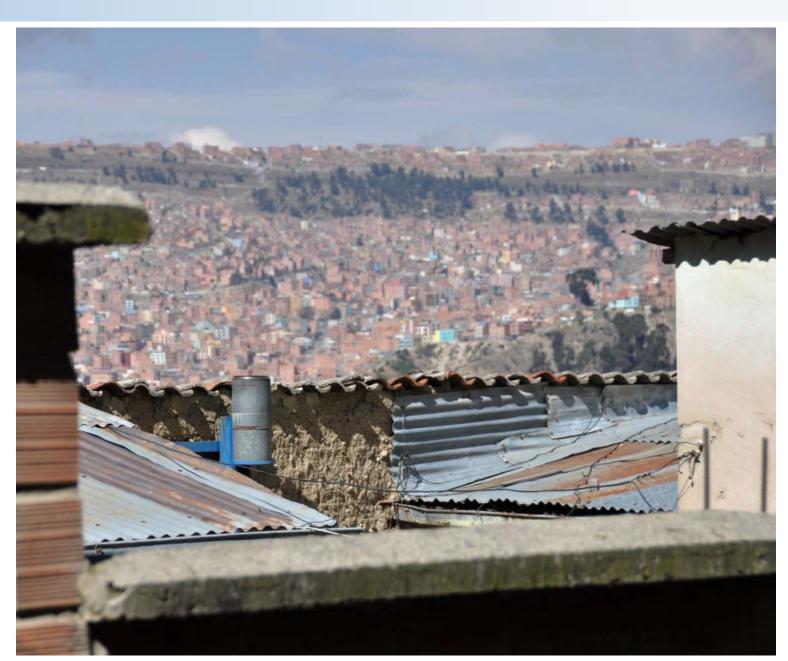
OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Nombre de la estación	Cota Cota			Alias			
Código(s)				Tipo de estación	Automática (datalogger CR200X SN: 1380 Campbell Scientific.		
Institución a cargo	Instituto de Investigaciones Físicas				3		
Persona de contacto	Lic. René Torrez Santalla						
Rotación del personal	Actual	Actual Lic. René Torrez Santalla					
personal	Previa	Previa No hubo nunca rotación d					
Cada cuanto se reporta a la oficina	Cada 2 se	manas se	descargan los	s datos			
Ubicación	Actual		Previa		Inicio de la serie de datos		
Latitud	16°33'20.	893''		Se inicia	a en tre 1998 y 1999		
Longitud	68°03'59.						
Elevación	3445.73 n						
		-	Fotografi	as desde la estació	ón		
Vista al Sur	1	Vista al N			Foto de la estación		
Vista al Este		Vista al O	este				
Obstáculos	Existen m	ateriales	como madera	s y fierros que per	judican el transito		
Infraestructura	La estació	ón está in	stalada en un	a Torre de fierro d	de aproximadamente 3.33 m de altura.		
Observaciones	El techo p	odría per	judicar la med	lición de la radiaci	ón solar.		

FORMULARIO DE RECOLECCIÓN DE METADATA ESTACIONES METEREOLÓGICAS

	Unidades		Altura	Intervalo de medici ón		Observaciones
Temperatura	°C	Licor 200	3.33[m]	5 (min)	No se realiza	No se realiza calibraciones,solo intercomparaciones con la estación de Patacamaya Variación de 2ºC actualmente . 13/03/2014
Presión						
Humedad relativa	%	Met one instruments	3,33[m]	5 [min]	No se realiza	No se realiza calibraciones,solo intercomparaciones con la estación de Patacamaya
Velocidad del viento	m/s	Met one instruments	3.07[m]	5 [min]	No se realiza	No se realiza calibraciones,solo intercomparaciones con la estación de Patacamaya
Dirección del viento	(°)	Met one instruments	3,07[m]	5 [min]	No se realiza	No se realiza calibraciones,solo intercomparaciones con la estación de Patacamaya
Precipitación						
Radiación solar	m∨		3.01[m]	5 (min)	No se realiza	No se realiza calibraciones,solo intercomparaciones con la estación de Patacamaya

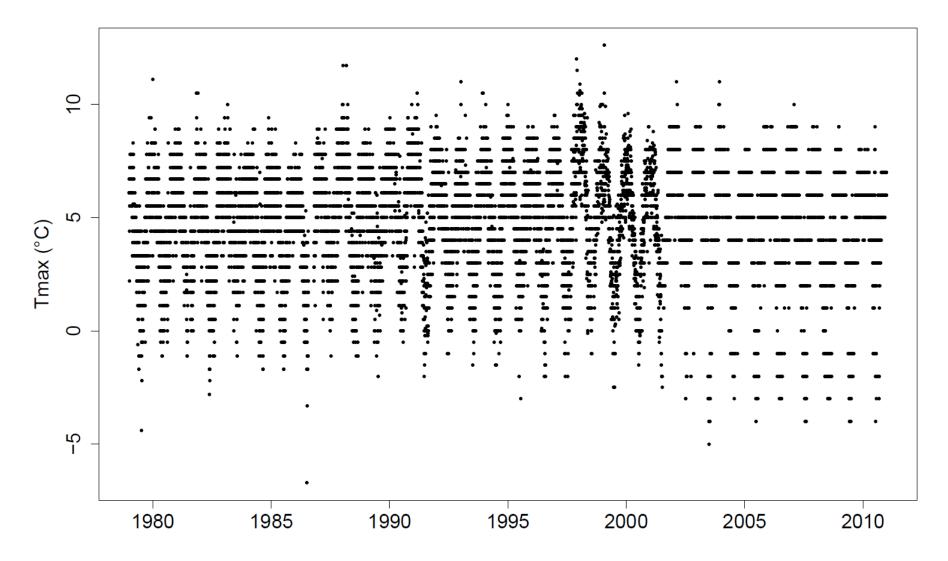

*Notas:


- No se tiene un periodo determinado para realizar la intercomparación

- La estación meteorológica fue armada por partes y no se tiene el número del modelo de cada parte.

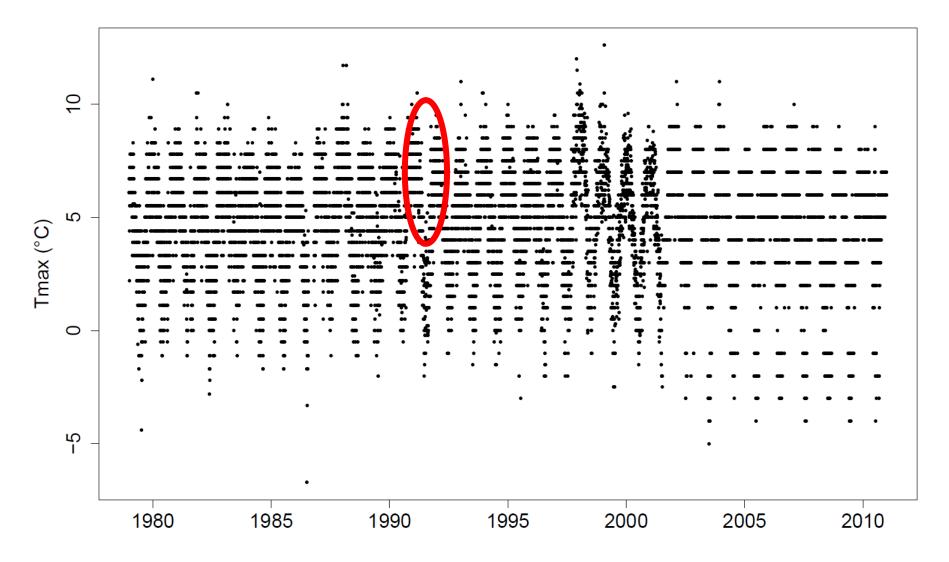
	BITACORA DE LA ESTACIÓN						
#	Fecha	Participante(s)	Acción ejecutada	Descripción			
1	12/03/2014	Decker Guzman Zabalaga	Recojo de bitacora	No exite bitácora de la estación.			
2	No existe fecha exacta	Lic. Rene Torrez Santalla	Retiro de radiómetro eppley	Aproximadamente hace un año y medio se hizo el retiro de radiómetro .			
3	20/02/2014	Lic. Rene Torrez Santalla	Descarga de datos	Se descargaron los datos de la estación por medio de una computadora conectada al Datalogger			

VINO_TINTO



 $u^{\scriptscriptstyle b}$

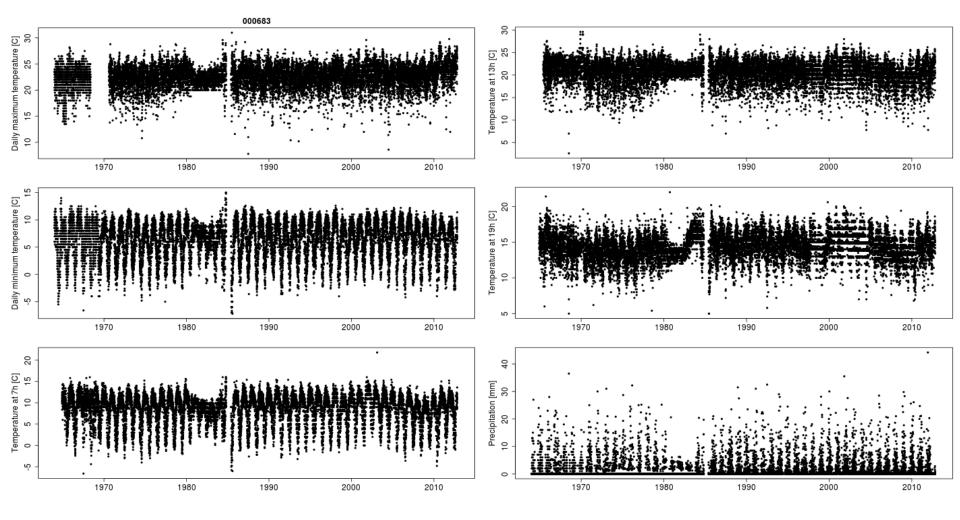
^b UNIVERSITÄT BERN


Rounding inconstancies

TIRAQUE

Rounding inconstancies

TIRAQUE


Reduced variability in all variables

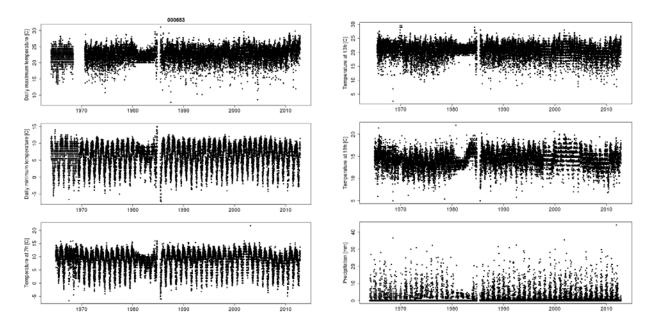
$\boldsymbol{u}^{\scriptscriptstyle b}$

^b Universität Bern

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

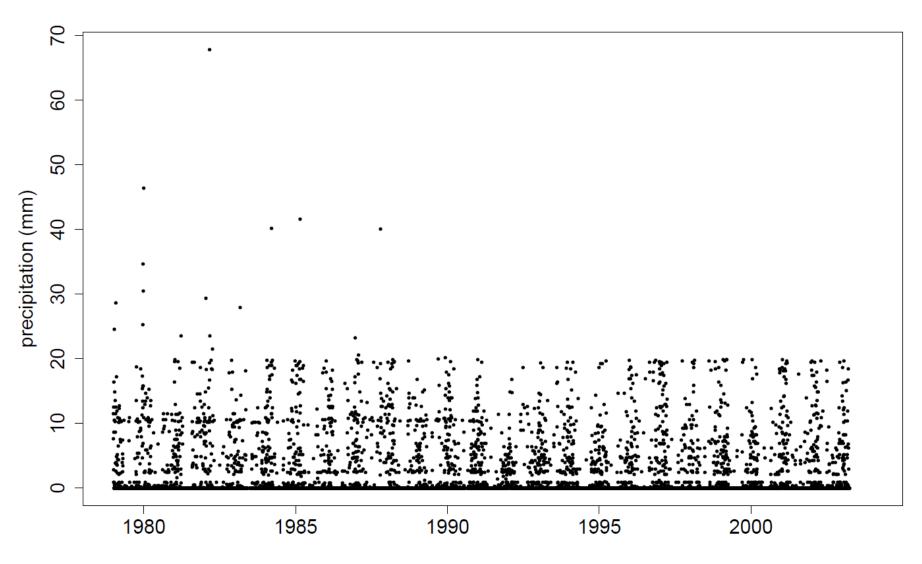
Urubamba, Peru

Reduced variability in all variables

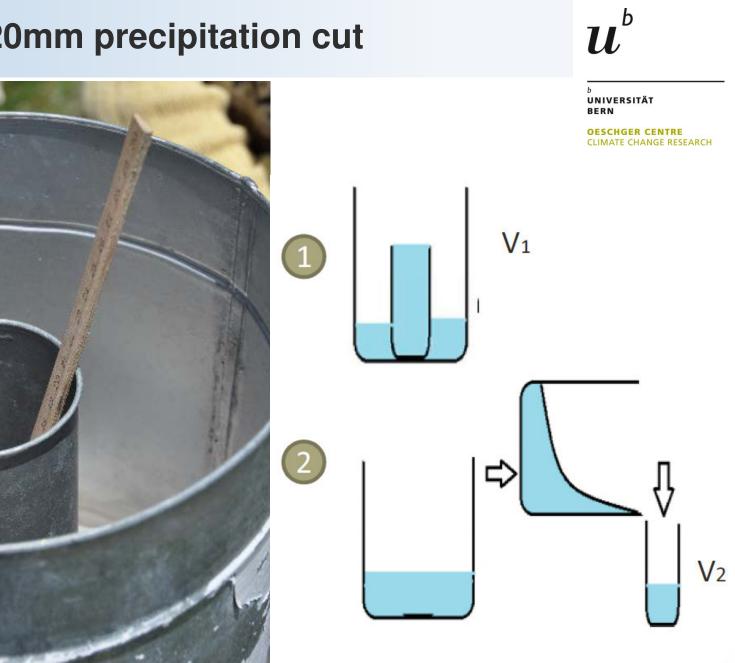


^b Universität Bern

OESCHGER CENTRE CLIMATE CHANGE RESEARCH


Urubamba, Peru

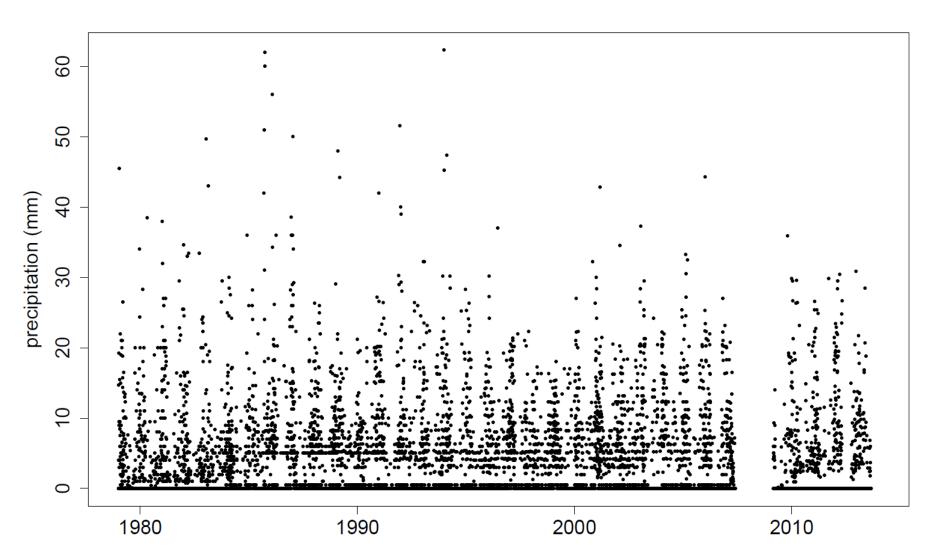
- Rebellion of the Sendero Luminoso against the Peruvian state (escalating in the early 80s)
- Data gaps and errors are found in many stations in that time
- All parameters affected \rightarrow observer error
- Exact source of error source is unknown



20mm precipitation cut

AGUIRRE

20mm precipitation cut

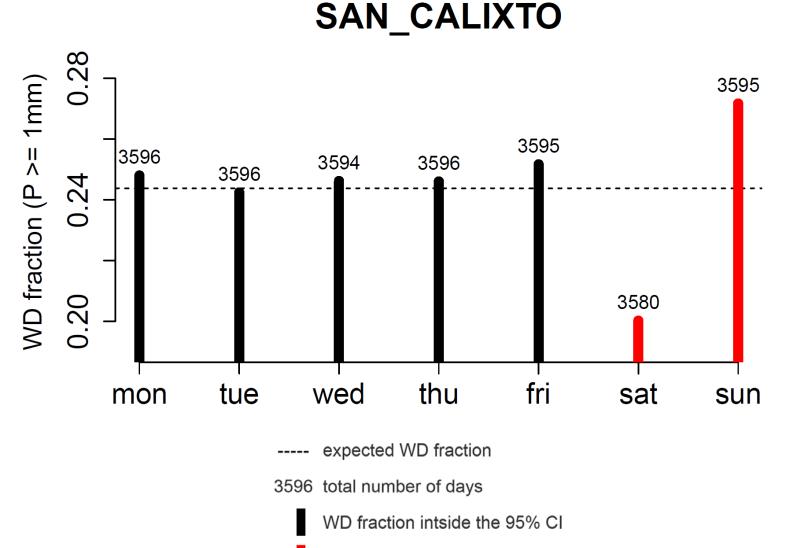


 $Vtot = V1+V_2$

Low precipitation gap

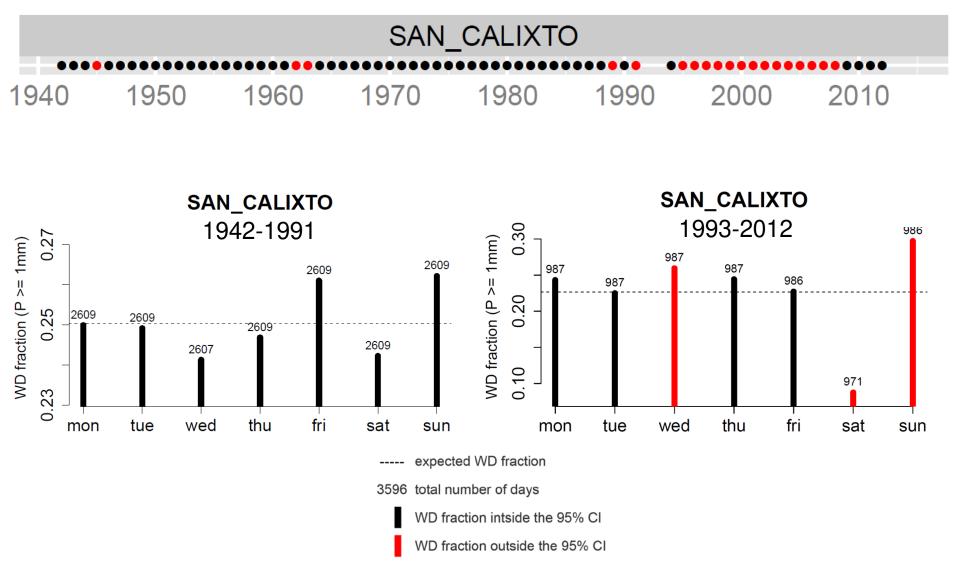
QUIABAYA

Low precipitation gap

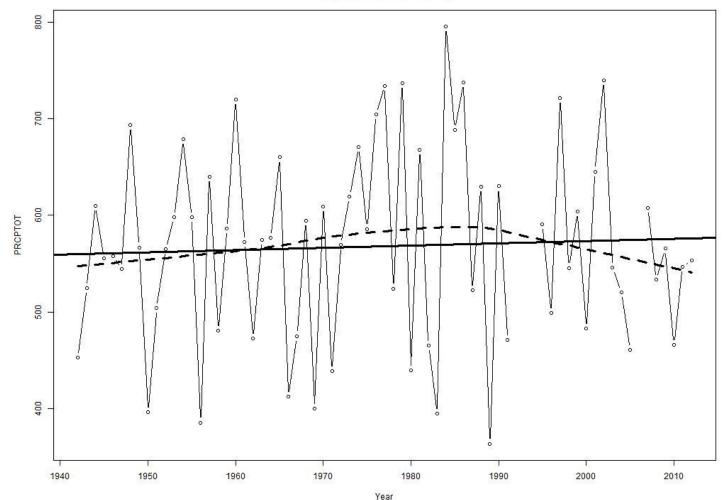

[⊅] UNIVERSITÄT BERN

NTRE SE RESEARCH

WD fraction outside the 95% CI



^b UNIVERSITÄT BERN



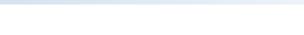
^b UNIVERSITÄT BERN

PRCPTOT: annual total wet-day precipitation

PRCPTOT SAN_CALIXTO.dat

R2= 0.2 p-value= 0.705 Slope estimate= 0.229 Slope error= 0.601

^b Universität Bern

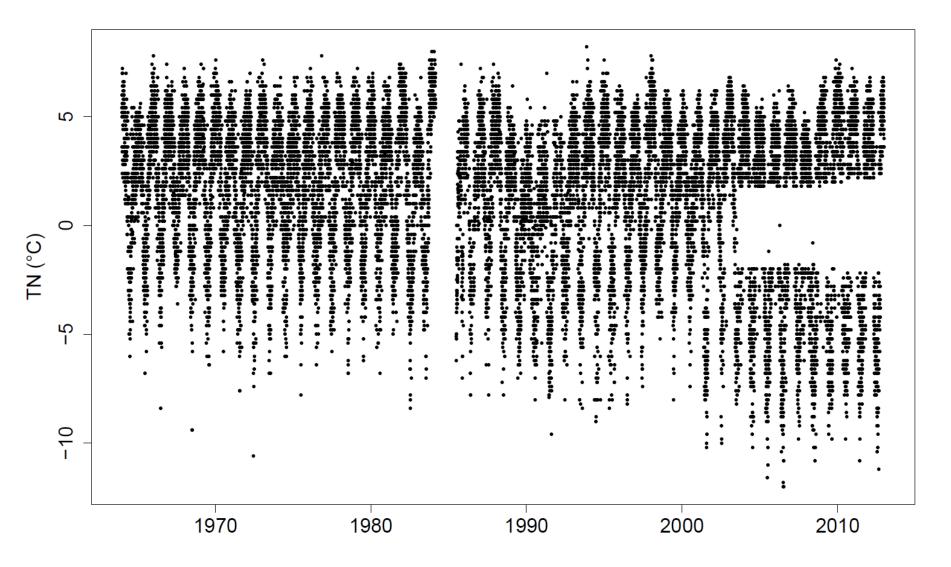


SDII (Simple Daily Intensity Index): annual total precipitation divided by the number of wet days in the year

Untagged rainfall accumulations

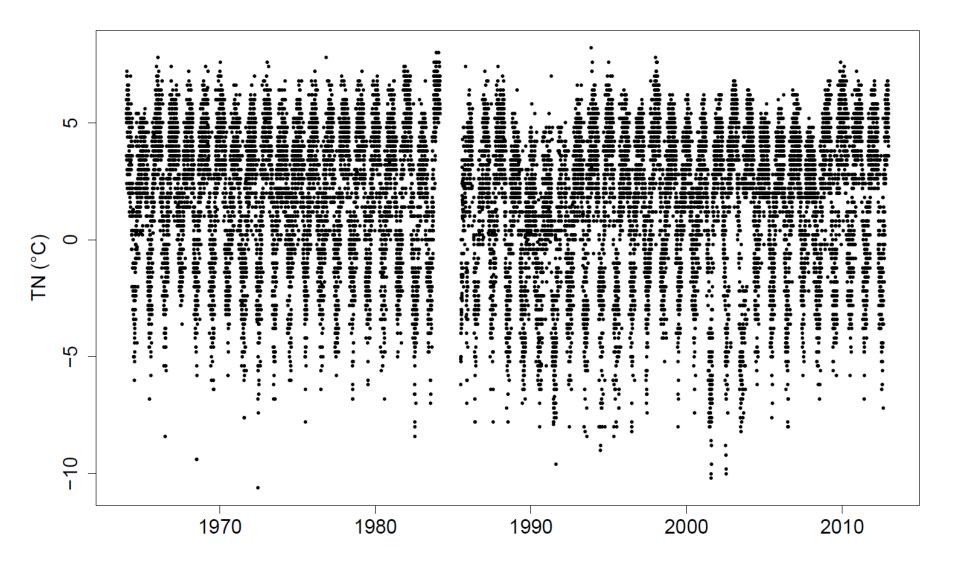
00 ▶~ SDII 0 9 40 1950 1960 1970 1980 1990 2000 1940 2010

Year R2= 9.4 p-value= 0.012 Slope estimate= 0.013 Slope error= 0.005


SDII SAN CALIXTO.dat

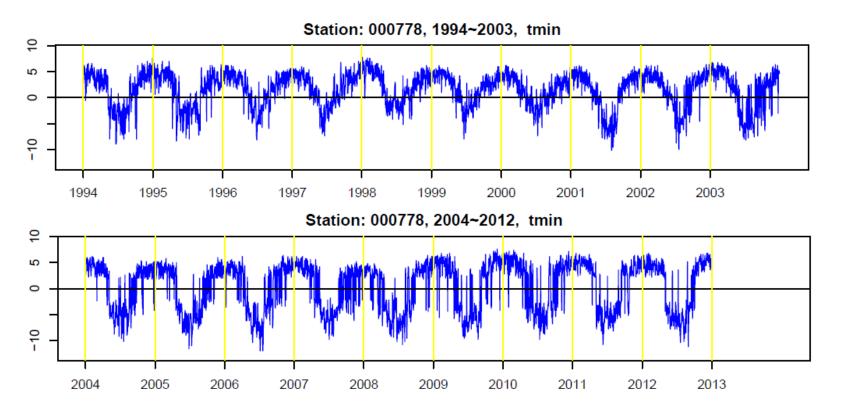
UNIVERSITÄT BERN

Error correction


Progreso

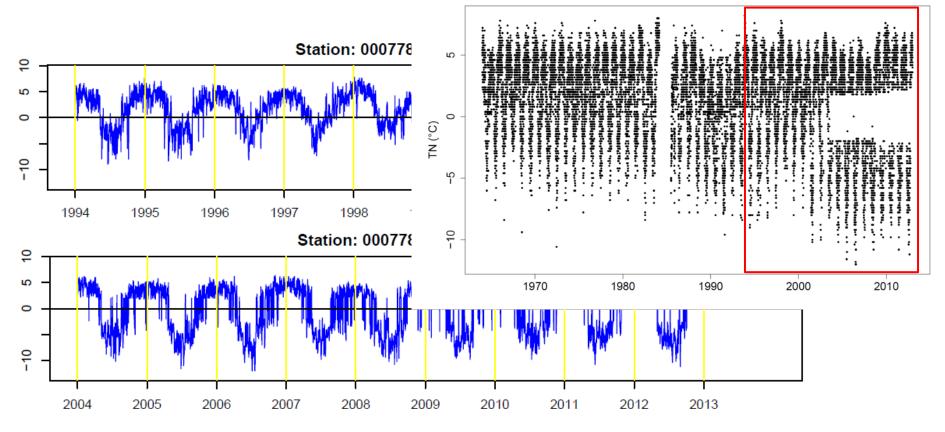
Error correction

Progreso



Error detection

[⊅] UNIVERSITÄT BERN


- QC is included in many programs
- Programs often create plots for visual quality control, e.g. RClimDex:

Error detection

- Quality control is included in many programs
- Programs often create plots for visual quality control:

^b UNIVERSITÄT BERN

Progreso

Conclusions

	b
11	

^b UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

- High priority to QC before analyzing data from Bolivia and Peru
- Ideally, metadata should be checked before using the data
- Visual QC is very helpful to detect patterns

 \rightarrow use point instead of lines plots

• Reporting errors and observations in data

 \rightarrow create additional metadata

- Knowing the source of the error allows to
 - possibly correct the error
 - decide if the error affects the data application of interest

 $u^{\scriptscriptstyle b}$

[⊅] UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Thank you!

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

The challenge of porting scientific results to operational applications

Rebekka Posselt*, Rebecca Hiller, Mark A. Liniger

*rebekka.posselt@meteoswiss.ch

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

The challenge of porting scientific results to operational applications

Rebekka Posselt*, Rebecca Hiller, Mark A. Liniger Thanks to work by: Christoph Frei, Sophie Fukutome *rebekka.posselt@meteoswiss.ch

In the beginning

The task:

- Analyze the past climate
- Monitor the current climate
- Predict the future climate

Therefore, climate researchers

- Develop new methods
- Create new visualizations

to deliver climate products

- Understandable
- Usable

by the climate information customer.

And then?

- «Leave it on the shelf to gather dust»?
- Port it to operational applications

- Direct, automatic output
- Uses Sweave (→LaTeX) with embedded R-Code
- Implementation of the official layout (Latex class)
- Statistical analysis via embedded R-Code
- Customizable (heading, text, contact info, ...)
- Automatic formatting (header, footer, ...)

Schweizerische Eidgenessenschaft Confederation svisse Confederation Svizzer Confederatiun svizze Eidgenöslischer Departement des Innern EDI Eurodeant für Meteoroficie und Klimatologie Meteorofichweiz MeteoSchweiz

Einordungsparameter: Niederschlag (rre002d0) 2-Tagessumme 0540 FT - 48 h

Ereignisdatum: 29. April 2015 (data_20150429_forecast_48.csv)

Referenzperiode: 1. Januar 1961 bis 31. Dezember 2010

Die Extremwertstatistik dient der Einordung von ausserordentlichen Ereignissen und kann deshalb nur für seltene Ereignisse mit einer Jährlichkeit > 10 Jahre verwendet werden. Deshalb erfolgt die Einordunung für häufigere Ereignisse anhand der emprischen Verteilung der Werte innerhalb der Referenzperiode. Die Wiederkehrwerte sind mit grossen Unsichenheiten behaftet und werden deshalb nur als Klassen ausgegeben, die die Grössenordung eines Ereignis quantifizieren.

Legende

Wiederkehrwert aus empirischer Verteilung (Emp. WK)

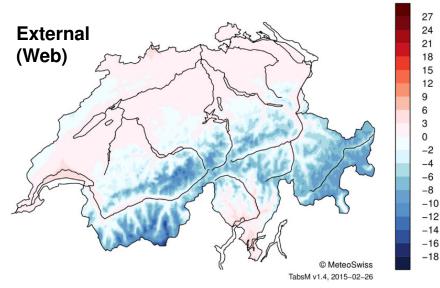
< 1.1 | 1.1 - 3 2 - 5 3 - 8 | 5 - 10 | 8 - 12 > 10

Wiederkehrwert aus Extremwertstatistik (EVA WK)

< 10 10 - 20 20 - 30 30 - 50 50 - 100 = 100

Nord- und Mittelbünden

Station	Höhe	aktueller Wert	Emp. WK	EVA WK
	[m ū.M.]	[mm]	[Jahre]	[Jahre]
Andeer (AND)	987	120	3 - 8	< 10
Bad Ragaz (RAG)	496	120		20 - 30
Bivio (BIV)	1772	70	1.1 - 3	< 10
Chur (CHU)	556	120		50 - 100
Davos (DAV)	1594	100		10 - 20
Disentis / Sedrun (DIS)	1197	120	5 - 10	< 10
llanz (ILZ)	698	120		10 - 20
Latsch (LAT)	1408	70	1.1 - 3	
Vals (VLS)	1278	120	2-5	< 10
Weissfluhjoch (WFJ)	2691	120	8 - 12	< 10


Östlicher Alpennordhang

Station	Höhe	aktueller Wert	Emp. WK	EVA WK
	[m ū.M.]	[mm]	[Jahre]	[Jahre]
Ebnat-Kappel (EBK)	623	100	1.1 - 3	< 10
Elm (ELM)	958	120	5 - 10	< 10
Glarus (GLA)	517	100	2-5	< 10
Santis (SAE)	2502	120	1.1 - 3	< 10
Vaduz (VAD)	457	120	> 10	

@ MeteoSchweiz, nur interne Nutzung Kontakt: klimainformation@meteoschweiz.ch event.eval::event.eval.table v0.2.1, 29.04.2015

Gridded Datasets

Monthly Mean Temperature (degC) Jan 2015

http://www.meteoschweiz.admin.ch/home/klima/gegenwart/monatsund-jahreskarten.html

- User-dependent visualizations
 - Less information for Internet \rightarrow Common user
 - Additional information for internal use (e.g., used for quality control) → Expert user

35

30

25

20

15 12

9

6

3

0

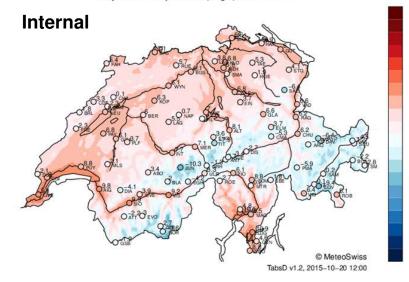
-3

-6

-9

-12

-15

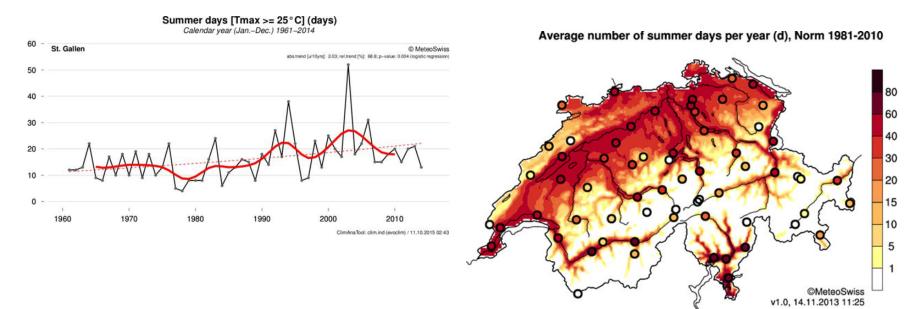

-20

-25

-30

-35

Daily Mean Temperature (degC) 2015-10-19


U

Climate Indices: Ongoing work

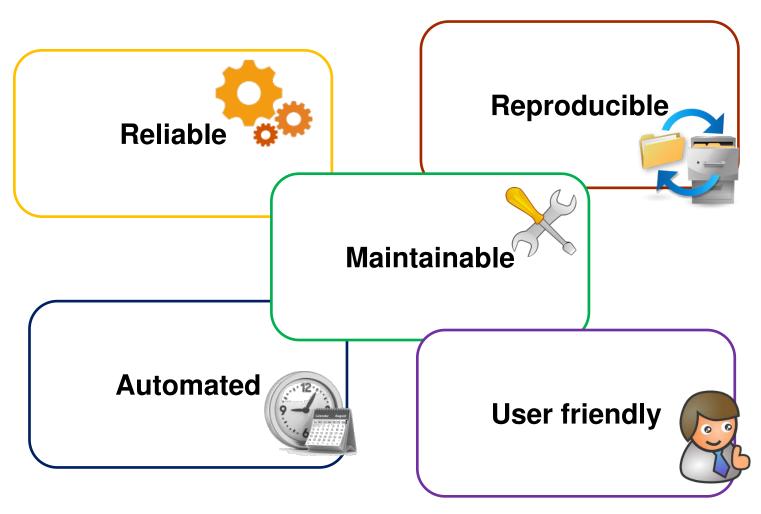
• Need for unification!

J

• Several tools @ MeteoSwiss used to calculate climate indices for station data, gridded data, climate scenarios

 CRAN-package "climdex.pcic": contribution and collaboration

The challenge of porting scientific results to operational applications | Posselt et al. EUMETNET Data Management Workshop 2015


And then?

D

- «Leave it on the shelf to gather dust»
- Port it to operational applications

Requirements on operational tools

The solution @ MeteoSwiss

CATs \rightarrow Climate Analysis Tools

CATs \rightarrow collection of «R»-packages \bigcirc = open-source statistical software

CATs provide the framework for

- Coordinated development
- Automatic and/or individual production
- Easy maintenance

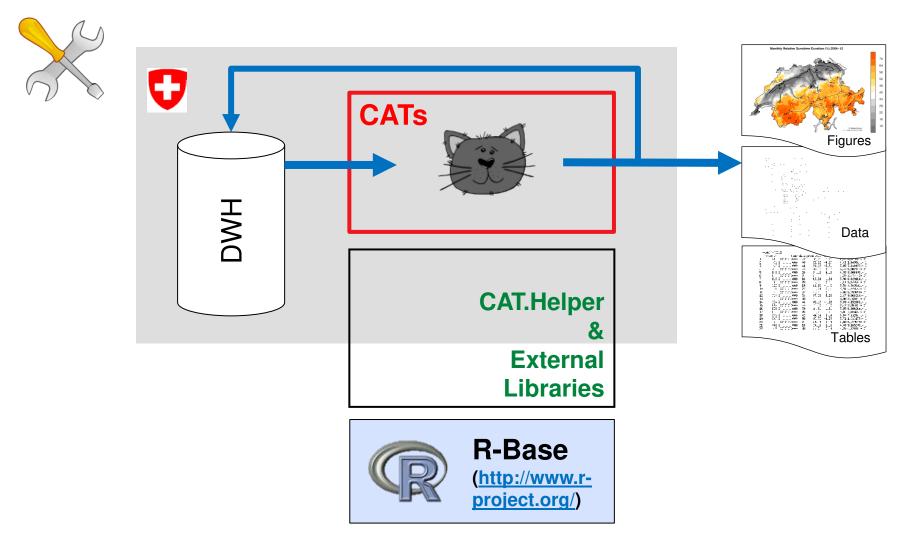
of a wide variety of climate products.

Common structure

Programm call (\rightarrow argument names and formatting)

• Easy to use, understood one \rightarrow understood all

CAT/Package structure (\rightarrow Input preparation, Data retrieval, Data analysis, Output)


- Enables coordinated and easy development
- Easy maintenance

General functionalities in CAT.Helper Libraries

- Basic functionality (data retrieval, color tables, labeling)
- Advanced, more scientific functionality (climate indices, Verification Skill scores)

Common Structure

Documentation

pheno.longts {phenopoll}

R Documentation

Long phenological records

Description

Create a plot of long phenological records

Usage

pheno.longts(parameter = "kjaesc09", station = "PGE", datafile = "dwh", bgimage = "aesculus", start.year = 1800, end.year = "current", ylim = c(-5, 120), title = NULL, add.years=TRUE, filter.col = "red", filter.max.gap=5, line.col = "darkblue", outpath="current", languages = "G"

- Comprehensive documentation required
- Meaningful examples and Tests necessary
- Recommended packages:
 - «roxygen» for Documentation
 - «testthat» for Testing

Arguments

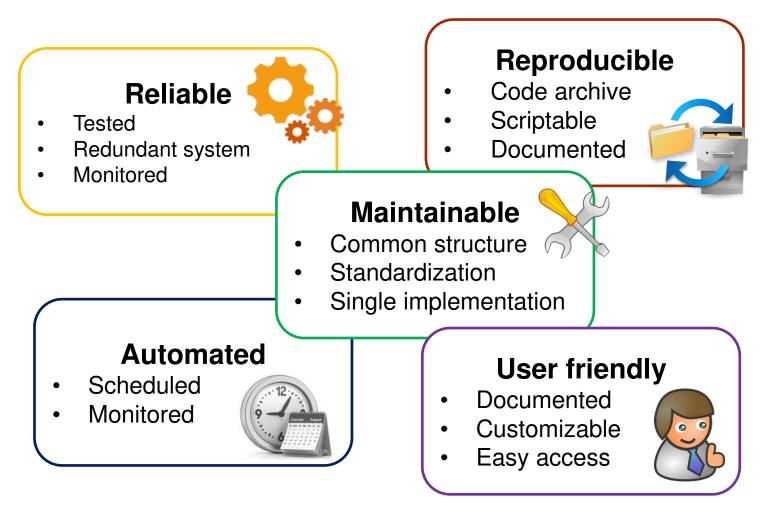
parameter station	character string parameter name as in dwh for text file data input, the parameter will be used in the output datafile character string station nat_abbr as in dwh for text file data input, the station will be used in the output datafile
datafile	character string "dwh" to derive data from dwh or the path and datafile of the input file the file must contain two columns separated by white spaces or tabs the columns do not have a header the first column defines the observation year in the format YYYYmmddMMHHSS the second column the observation date in the format YYYYmmdd
bgimage	character string datafile of the background image NULL to omit the background image "prunus" and "aesculus" for default pictures of the two plants provided as part of the package
start.year	numeric start year of the analysis YYYY e.g. start.year=2012
end.year	numeric end year of the analysis YYYY, e.g. end.year=2012 or end.year="current" for the current year, or end.year="last" for the year preceding the current year
ylim	numeric vector of length 2, min and max value on the y-axis, xlim=NULL for autoscaling

G – A version control system

- Change tracking:
 - Who changed What, Where, and When
 - Supports collaboration between developers
- Code archive
- Trigger for automatic installation on the servers

Automated production & monitoring

- Job scheduling via Linux-intern «crontab»
 - Manage the automatic production for Internet, Intranet, Archive, ...
 - ~20 CATs run as «cronjobs» at different times (daily, monthly, seasonal, yearly, special, ...)
- Monitoring by capturing «errors»
 - Within the «cronjob» scripts
 - → Trigger of Fail-Emails


Server architecture

- Development server
 - \rightarrow Reserved for developing CATs
- Interactive server
 - \rightarrow Accessible by all interested employees
 - \rightarrow Individual production
- Production server
 - \rightarrow Reserved for automated production
 - → Redundant layout (Main + FailOver)
- All servers provide the same environment (OS, libraries)
- Maintenance and administration by IT-Department

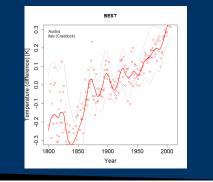
Requirements on operational tools

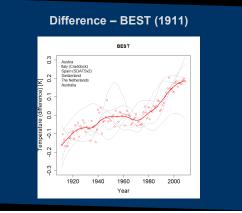
J

Is the global mean temperature trend too low?

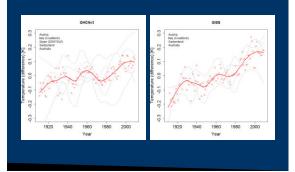
Victor Venema, Phil Jones, Ralf Lindau, Tim Osborn and numerous collaborators

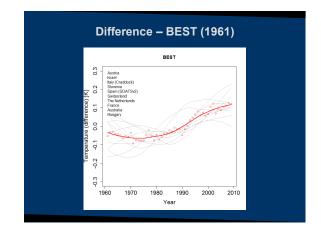
@VariabilityBlog variable-variability.blogspot.com

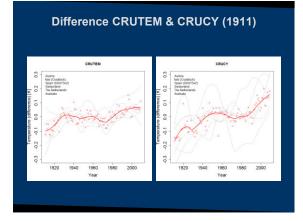

Content

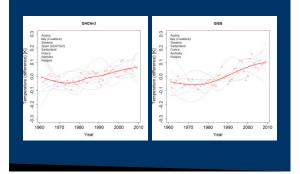

- 1. Comparison trend in national datasets & global collections
- 2. Global temperature datasets
- 3. Statistical homogenization
- 4. Physical understanding historical transitions
- 5. Other changes in the climate system

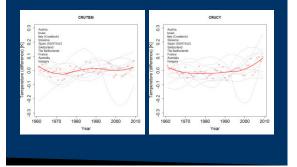
Well-homogenized national datasets

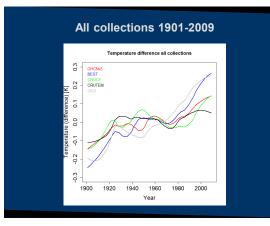

- Australia, Austria, France, Hungary, Netherlands, Israel, Italy, Slovenia, Spain and Switzerland
- Compared global collection
 - Annual mean averaged over same countries
 - Berkeley Earth Surface Temperature (BEST)
 - GHCNv3, GISS
 - CRUCY, CRUTEM4
- National datasets are expected to be better
 - More data: better correlated references
 - More metadata: station history
 - More care and better methods

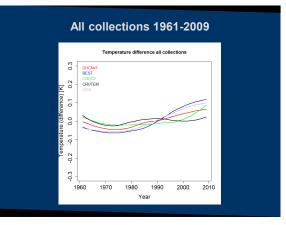

Difference (national – global) BEST (1800)

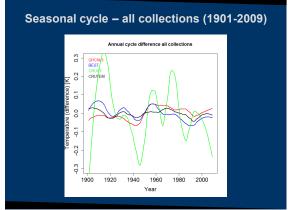



Difference – GHCN & GISS (1911)

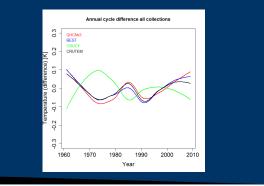


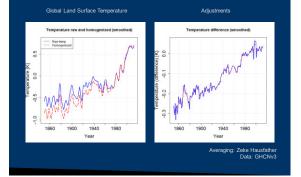



Difference – GHCN & GISS (1961)

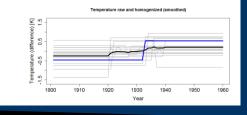


Difference – CRUTEM & CRUCY (1961)




Seasonal cycle – all collections (1961-2009)

Content


- Comparison trend in national datasets & global collections
- 2. Global temperature datasets
- 3. Statistical homogenization
- 4. Physical understanding historical transitions
- 5. Other changes in the climate system

Inhomogeneities in GHCNv3

Regional trend bias correction

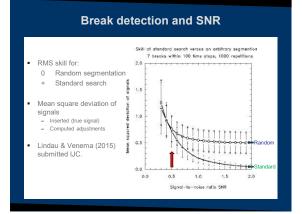
- A small bias in breaks can lead to large-scale temperature trend errors
- Correction with composite reference
 Reference has the same bias

Undercorrecting trend biases

ANOVA decomposition

Regional climate signal for all stations
Step function per stations
Noise to be minimized

Computing the adjustments is a regression


Predictards: adjustments (+ regional signal)
Numerical test (all breaks are known)
ANOVA adjustments (break positions)

Imperfect predictors (break positions)
Break variance is underestimated

Trend biases will be undercorrected

All breaks detected, but error in position of 2 year:

18% of trend bias remains
Artificial, but gives idea of the order of magnitude

Trend uncertainties

- Benchmarking gives qualitative idea of uncertainties
 - HOME: 10%. NOAA: 90%
 - HOME: no explicit large-scale trend bias (thus very small)
 - Several caveats of unknown importance
 - HOME: size of the breaks 2x too large
 - NOAA: breaks implemented as random walk
- High network density USA & Europe
 - Much of the world and periods SNR will be smaller
- > Need better validation (ISTI) and numerical studies

Conclusions

- Trend difference between well-homogenized datasets and global collections
 - Land surface temperature
- If there is a cooling bias in raw observations: - Trend error likely undercorrected
- Physical understanding of cooling bias poor - Transition to Stevenson screens seems undercorrected
- Many other changes in climate system fast

Future research -Comparison national & global data

- Quality categorisation is subjective
- Ask multiple scientists to make a categorisation
- Understand physical reasons for cooling bias
 - Also compare seasonal/monthly series
 - Timing of changes
- Study the adjustments applied in GHCN - Timing, station density and climates
- Compare national adjustments to GHCN adjustments
- Comparison on a station level

Future research -Comparison national & global data

- Understand trend differences adjustments
 - Homogenization methods
 - Detection or correction
 - Data available as reference / station density Break frequency
 - Metadata
 - Precise date, significance level
 - · Physical adjustments, adjustment size
 - · Percentage of confirmed breaks
 - Selection of stations
 - Averaging:
 - Mean reference stations, interpolation, gridding
 - National stations or also neighbouring countries

Future research -Comparison national & global data

More datasets (of any quality level)

- Australia, Austria, Canada, Catalonia, Catalonia, China (MASH, CMA), Croatia, Czech Republic, Estonia, Ecuador, Finland, France, Germany, Greece, Hungary, Ireland, Israel, Italy (Craddock, Toretti), Latvia, Netherlands, Central Netherlands, Norway, Ukraine (long and short), United Kingdom, Portugal, Romania, Russia, Serbia, Slovakia, Slovenia, Spain (AEMET, SDATSv2, ACMANT, MOTEDAS), Sweden, Switzerland
- Greater Alpine Region, Carpathian basin, Central England Temperature, Catalonia.
- More variables
 - Precipitation, extreme temperatures

Future research - Homogenization

- Need better mathematical understanding of how well large-scale trend biases can be removed
 - Numerical understanding: ISTI global benchmarking
- Need better homogenization methods
 - Multiple breakpoint methods
 - Low signal to noise ratio
 - Determination of optimal number of breaks
 - Joint detection
 - Noise reduction of difference time series
 - Apply them to global datasets
- Need to exchange more data & metadata

Future research – Physical reasons

- Understanding of cooling biases is poor
 - Reduction radiation errors
 - Relocations, better siting
- Irrigation and watering near weather stations
- Large global parallel dataset can help
 - ISTI-POST side meeting at 15.00
 - Transition to AWS
 - Transition to Stevenson screen
 - Relocations
 - o Changes in weather variability and extreme weather o Poster
 - Precipitation, humidity, wind(?)

Questions?

Victor.Venema@uni-bonn.de http://variable-variability.blogspot.com/

Description of the bias introduced by the transition from Conventional Manual Measurements to Automatic Weather Station through the analysis of European and American parallel datasets. (+ Australia, Israel & Kyrgyzstan)

E. Aguilar , P. Stepanek , V.K.C. Venema, R. Auchmann, F.D. dos Santos Silva, E. Engström, A. Gilabert, Z. Kretova, J.A. Lopez-Díaz, Y. Luna Rico, C. Oria Rojas, M. Prohom, D. Rasilla, M. Salvador, G. Vertacnik, and Y. Yosefi

Presenting Author: E. Aguilar (enric.aguilar@urv.cat) Center for Climate Change, C3,URV, Tarragona, Spain. See acknowledgements for full institutions list

October-2015. Saint-Gallen.

IN THIS TALK

- Motivation.
- POST & the AWS-Manual transition dataset.
- Results: networkwide; per country; some particular cases.
- Summary, further work.

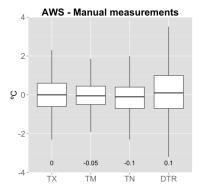
- We have inhomogeneities.
- Daily data homogenization needs to be improved.
- Parallel measurements help us to empirically compare the effect of transitions between systems.
- Their analysis contributes to : create realistic benchmarks; validate homogenization; evaluate uncertainty.

- $\bullet\,$ This talk AWS-Manual temperatures < POST-AWS < POST < ISTI
- POST is a Working Group of the International Surface Temperature Inititative (ISTI), which intends to contribute to the creation and delivery of reliable climate services produced with an open and transparent procedures: www.surfacetemperatures.org
- POST works to **create a global parallel dataset** to enable the **study of systematic biases** in the national, regional and global records of different Essential Climate Variables (ECVs).

COUNTRY	STATIONS	DETAILS ON AWS STATIONS
Argentina	9	No info available at this point
Australia	13	Stevenson shelters; AWS are relocations
Brazil	4	AWS sensors in Young screens
Israel	5	AWS Campbell/Rotronic (repl. 2005) in Stevenson
Kyrgyztan	1	Vaisala HMP45C in non-stevenson shelter
Peru	31	AWS sensors in multiplate shelters
Slovenia	3	iButton probes in same Stevenson Screen than LIG
Spain	35	Mixture of Stevenson and non-Stev. (Young type)
Sweden	8	AWS in multiplate screens (Young Type)
USA	6	AWS in fan aspirated solar radiation shields

• POST is preparing a metadata template to distribute to partners

- More than 300,000 values checked.
- Set to error: $|t|>60^{\rm o},\,|{\rm AWS-CON}|>10^{\rm o}{\rm C}$, value of $|t|>40{\rm C^o}$ & $|{\rm AWS-CON}|>5,\,{\rm TX}>{\rm TN}.$
- Set to very suspect: outliers in temperature and difference (4 IQR).
- Set to **suspect**: outliers either in temperature or difference (4 IQR).


	1	2	3	4	9
$\mathbf{t}\mathbf{x}$	1.19	0.01	0.02	97.80	0.98
tn	0.60	0.02	0.02	98.59	0.77

Percentage of values flagged during QC.

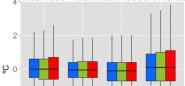
1.- Error; 2.- Very Suspect ; 3.- Suspect ; 4 Passed QC; 9 NA.

- This analysis is run using all the data which was not labelled as error in QC (level > 1).
- The median bias in TX and TM is 0.0°C, meanwhile it is -0.1 in TN and +0.1°C in DTR.
- Wishkers indicate spread (1.5 times IQR).

• Even though these results are not representative (different years, different number of values, uneven area coverage, etc.), they show to some extent the cancellation exerted by different sign biases.

BIAS ANALYSIS. FULL DATASET. SEASONS

- Cold and Warm seasons have been adapted to each hemisphere (DJF for HS, JJA for HN).
- MAM and SON are labelled as **Transition**.


• Values are **similar to** those found for the **year-round** analysis.

-2

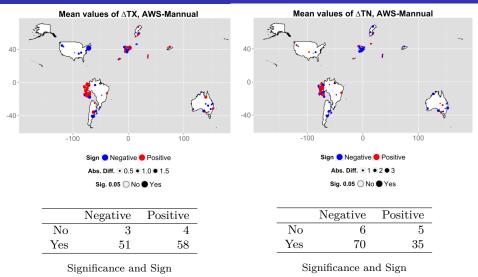
-4

тχ

• Warm season shows slightly larger dispersion.

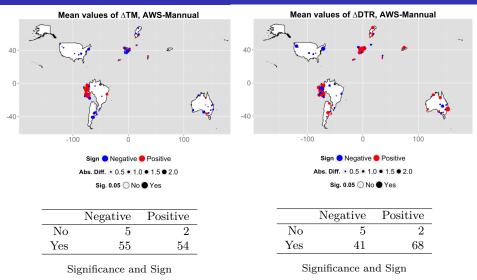
тім

т'n

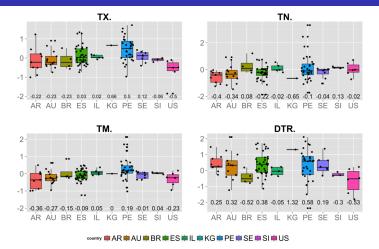

Cold = Transition Warm

DTR

Automatic - Mannual measurements

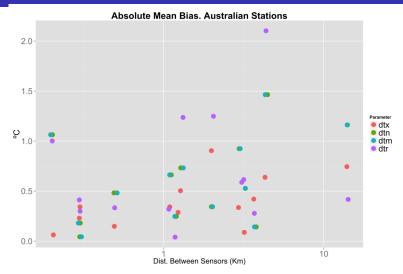

MEAN BIAS (AWS-Manual) PER STATION. TX, TN.

• Most diff. significant. In TN 2/3 of the series show cooler AWS.

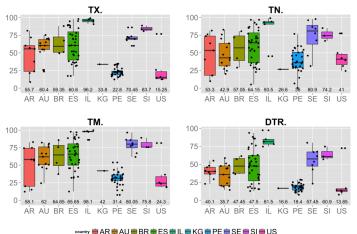

MEAN BIAS (AWS-Manual) PER STATION. TM and DTR

• Most diff. significant. More than 60% of AWS show larger DTR.

Contre for


BIAS (deg. C) AWS-MANUAL PER COUNTRY

- Different countries = different results. Eg. Peru shows larger bias in Tx than other countries and Irael shows no bias in DTR.
- More data is necessary to reach more solid conclusions.



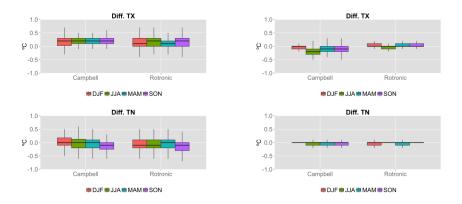
INFLUENCE OF OTHER FACTORS. AUSTRALIA .

• The plot shows a tendency of the **absolute mean bias to grow with increasing distance** between sensors.

PERCENTAGE ABS. AWS-MANUAL < 0.5

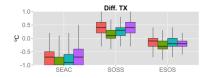
• Israel (nearly 100%), Slovenia and Sweden show the larger % of diffs in a |0.5| range. Notice larger spread in TN, specially Sweden and Peru.

Centre for Climate Change


Israel made available detailed metadata:

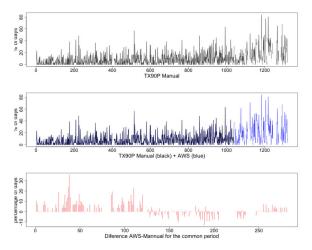
Station	Code Man/AWS	Parallel Period	AWS Type
Eilat	9972/9974	01/05/2001-08/07/2002	Campbell 107
Eilat	9972/9974	09/07/2002-31/05/2008	Rotronic-MP101
Zefat	4640/4642	01/02/2003-30/06/2008	Rotronic-MP101
Jerusalem	6770/6771	01/01/1996-31/08/2005	Campbell 107
Jerusalem	6770/6771	01/09/2005-29/02/2008	Rotronic-MP101
Kefar Blum	8471/8472	01/07/2005-31/03/2009	Rotronic-MP101
Sedom	9570/9571	01/01/2003- $30/04/2009$	Rotronic-MP101

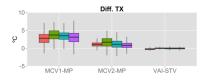
• Even more detailed information and pictures was made available by Israel Meteorological Service.


EFFECT OF INTERNAL INHOMOGS. EILAT (left), JERUSALEM (right), **ISRAEL**

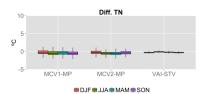
- The effect of the sensor change is relatively small in absolute magnitude.
- But some seasons (eg. Eilat, winter, DTN) reverse sings of the median difference after the replacement.

- The Observatorio del Ebro, near Tortosa (Tarragona, Spain) is the longest paralell record we have available for Spain.
- The AWS sensors are always located inside the same Stevenson Screen of the LIG manual measurement.
- DTX and DTN bias changes up to 1°C, reverses sign and alters seasonality with sensor changes


DUE .LIA MAM SON


EFECT OVER ETCCDI INDICES. TX90
p. OBSERVATORIO-EBRO, $\ensuremath{\mathbf{SPAIN}}$

• Introduction of AWS affects mean values and also ETCCDI indices. Sensor changes are evident.



- Internal changes in Fabra station have a strong effect in the relation between the AWS and the Manual measurements, specially in DTX. (Notice the change in y-axis scale)
- When the AWS sensor is sheltered inside the **Stevenson screen**, the **differences are much smaller** and even **reverse sign in DTX**.
- For **DTN**, the changes are less **dramatic** and do not imply a change in sign, but the dispersion of the difference series becomes much smaller.

DIF . LIA MAM SON

Median differences AWS-CON for the third period (AWS in Stevenson)

	ΤХ	TN
sun <= 03 hours	-0.2	-0.2
sun >= 10 hours	0.0	-0.2
wind sp. $\leq 2 \text{ m/s}$	-0.2	-0.3
wind sp. $>= 6 \text{ m/s}$	0.0	-0.2
precip <= 1 mm	-0.1	-0.1
precip >= 5 mm	-0.2	-0.2

• We intend, if data is available, to stratify the results with other variables / weather types.

- We have presented a dataset of temperature observations for the study of the transition between AWS and Manual observations.
- Although averaged biases over the whole dataset are not remarkable, most individual stations show significant differences.
- These differences vary much between countries and within countries.
- Differences affect not only the mean, but also extremes and ETCCDI indices.
- Instrumentation and sheltering plays a very important role, easily identificable.
- At this point we cannot determine whether different climates imply different biases.
- Other factors such as internal inhomogeneities and distance between the parallel measurements must be taken into account.
- The more data we have, the more solid conclusions we will be able to reach.

- This study has been possible thanks to the kind contributions of many coauthors and their institutions.
- It will continue under the guidance of POST.
- POST intends compile the largest possible dataset of transition (including AWS Manual) to understand their effect on climate series.
- POST is your playground. Come and play!

- More info about POST: http://tinyurl.com/ISTI-Parallel.
- Interested in joining us? Contact chair, Victor Venema, after EMS at Victor.Venema@uni-bonn.de.

Thanks for your atention and thanks to:

Universitat Rovira i Virgili, Center for Climate Change, C3, Tarragona, Spain, Global Change Research Centre, Czech Academy of Sciences, Brno, Czech Republic, Czech Hydrometeorological Institute, Brno Regional Office, Brno, Czech Republic, University of Bonn, Meteorological Institute, Bonn, Germany, University of Bern, Institute of Geography, Bern, Switzerland, Instituto Nacional de Meteorologia, INMET, Brazil, Swedish Meteorological and Hydrological Institute, Norrköping, Sweeden, Main Hydrometeorological Administration, Bishkek, Kyrgizstan, Agencia Estatal de Meteorología, AEMET, Madrid, Spain, Servicio Nacional de Meteorología e Hidrología del Perú(SENAMHI), Lima, Perú, Servei Meteorològic de Catalunya, Barcelona, Spain, Universidad de Cantabria, Santander, Spain, Slovenian Environment Agency, Ljubljana, Slovenia, Israel Meteorological Service, Tel-Aviv, Israel and Servicio Meteorològico Nacional, Buenos Aires, Argentina, Bureau of Meteorology, Australia for their contributions in terms of data and human resources.

With the support of Grant **CGL2012-32193**, Ministerio de Economía y Competitividad, **MINECO**, España and FP7-SPACE-2013-1 grand 607193, Uncertainties in Ensembles of Regional Reanalyses (UERRA).

Biases in precipitation records found in parallel measurements

Petr Stepanek (1,2), Enric Aguilar (3), Victor Venema (4), Renate Auchmann (5), Fabricio Daniel dos Santos Silva (6), Erik Engström (7), Alba Gilabert (1), Zoia Kretova (8), Jose Antonio Lopez-Díaz (9), Yolanda Luna Rico (9), Clara Oria Rojas (10), Marc Prohom (11), Domingo Rasilla (12), Mozar Salvador (6), Gregor Vetacnik (13), Yzhak Yosefi (14), Maria de los Milagros Skansi (15)

 Global Change Research Centre, Czech Academy of Sciences, Brno, Czech Republic., (2) Czech Hydrometeorological Institute, Brno Regional Office, Brno, Czech Republic, (3) Universitat Rovira i Virgili, Center for Climate Change, C3, Tarragona/Tortosa, Spain., (4) University of Bonn, Meteorological institute, Bonn, Germany., (5) University of Bern, Institute of Geography, Bern, Switzerland., (6) Instituto Nacional de Meteorologia, INMET, Brazil., (7) Swedish Meteorological and Hydrological Institute, Norrköping, Sweeden., (8) Main Hydrometeorological Administration, Bishkek, Kyrgizstan, (9)Agencia Estatal de Meteorología, AEMET, Madrid, Spain, (10) Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI), Lima, Perú, (11) Servei Meteorològic de Catalunya, Barcelona, Spain, (12) Universidad de Cantabria, Santander, Spain. (13) Slovenian Environment Agency, Ljubljana, Slovenia, (14) Israel Meteorological Service, Bet-Dagan, Israel., (15) Departamento Climatología, Servicio Meteorológico Nacional, Buenos Aires, Argentina.

Content

- Motivation / POST initiative
- The conventional automatic precipitation measurements dataset
- Results
- Summary

Motivation

- For studying climatic changes it is important to accurately distinguish non-climatic from climatic signals
- This can be achieved by studying the differences between two parallel measurements. These need to be sufficiently close together to be well correlated
- One important ongoing worldwide transition is the one from manual to automated measurements. We need to study the impact of automated measurements urgently because sooner or later this will affect most of the stations in individual national networks
- Similar to temperature series, we study the transition from conventional manual measurements (CON) to Automatic Weather Stations (AWS), using several parallel datasets distributed over EuroAsia and America

Instrumentation, example from CZ

The METRA 886 rain-gauge

MR3H automatic tipping bucket rain-gauge

Parallel Observations Scientific Team (POST)

- In this talk we deal with the transition from conventional (manual) to automatic precipitation measurements (AWS)
- This is another study in the framework of The Parallel Observations Scientific Team (POST, <u>http://www.surfacetemperatures.org/databank/parallel_measurements</u>)
- POST is a Working Group of the International Surface Temperature Inititative (ISTI), which intends to contribute to the creation and delivery of reliable climate services produced with an open and transparent procedures:

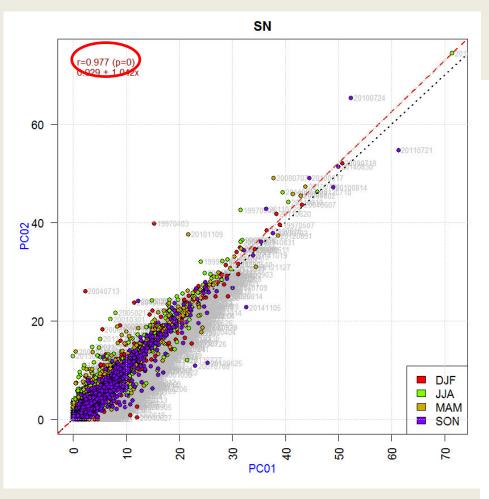
www.surfacetemperatures.org

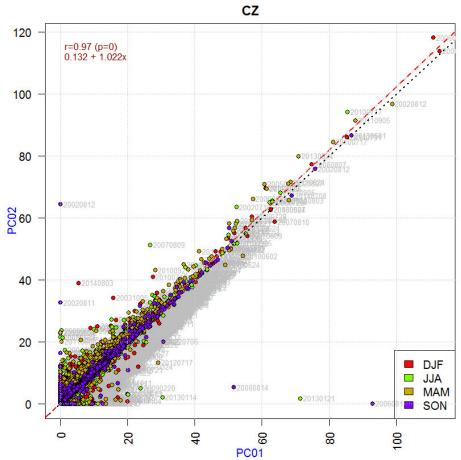
 POST works to create a global parallel dataset to enable the study of systematic biases in the national, regional and global records of different Essential Climate Variables (ECVs)

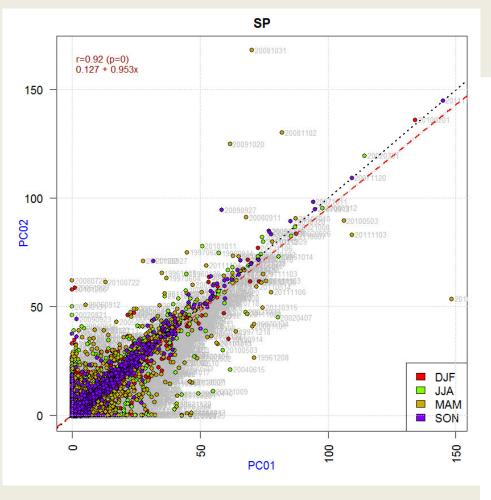
Available datasets for transition between CON and AWS

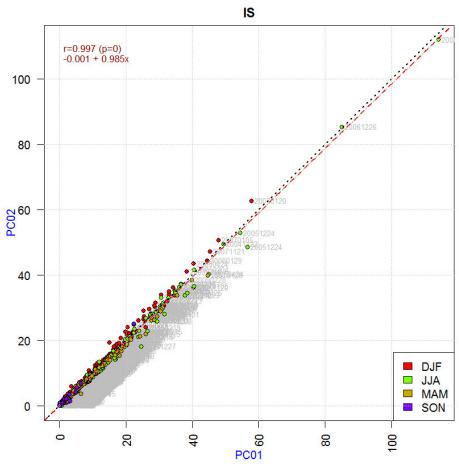
- Only a few datasets are available so far, so our data base is not global. In this analysis, we will present series from America (Argentina, Brazil, Peru, USA), Asia (Israel, Kyrgyztan) and Europe (Slovenia, Spain, Sweden, Czech Republic).
- Data have been kindly provided by local scientists (see co-authors list). New contributions are expected and more are most welcome.

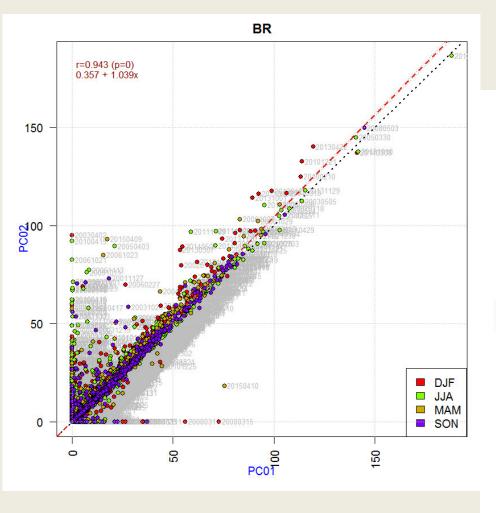
Available datasets for transition between CON and AWS

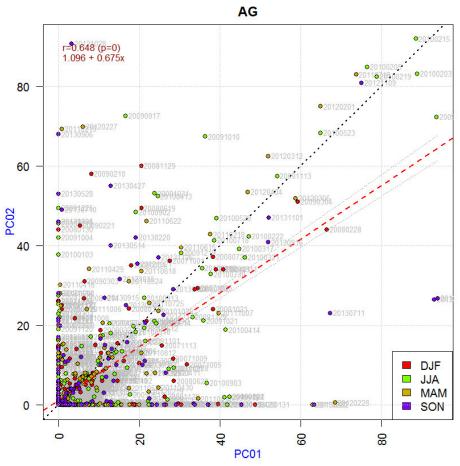

Country	Name	Count
AG	Argentina	1
BR	Brazil	4
CZ	Czech Republic	19
IS	Israel	5
KG	Kyrgyzstan	1
PE	Peru	31
SN	Sweden	8
SP	Spain	33
US	United States	6

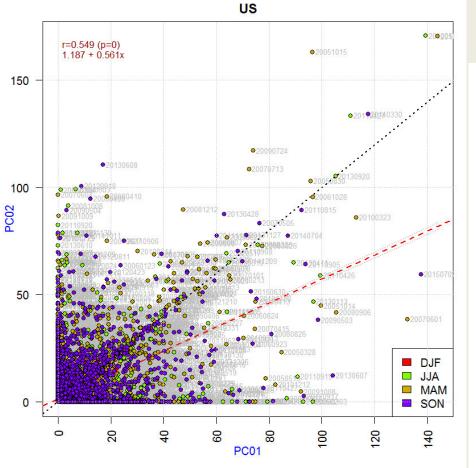

Available datasets for transition between CON and AWS

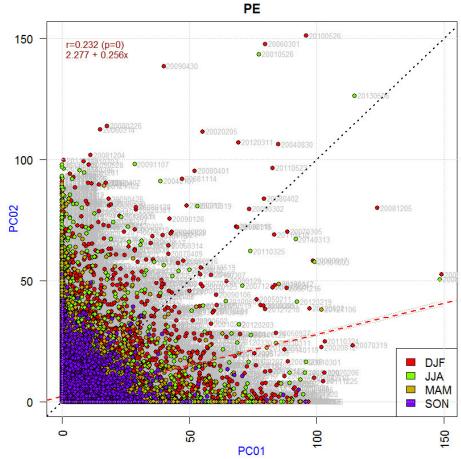


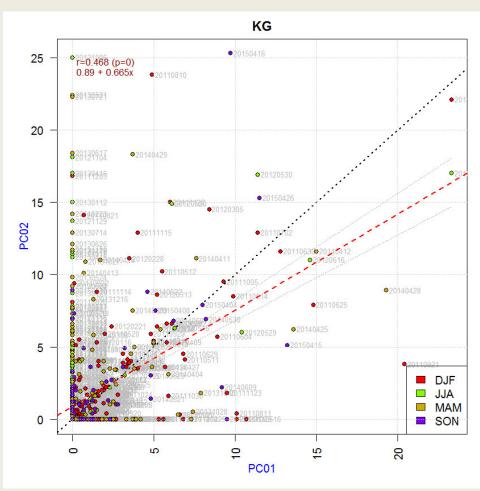

Data pre-processing

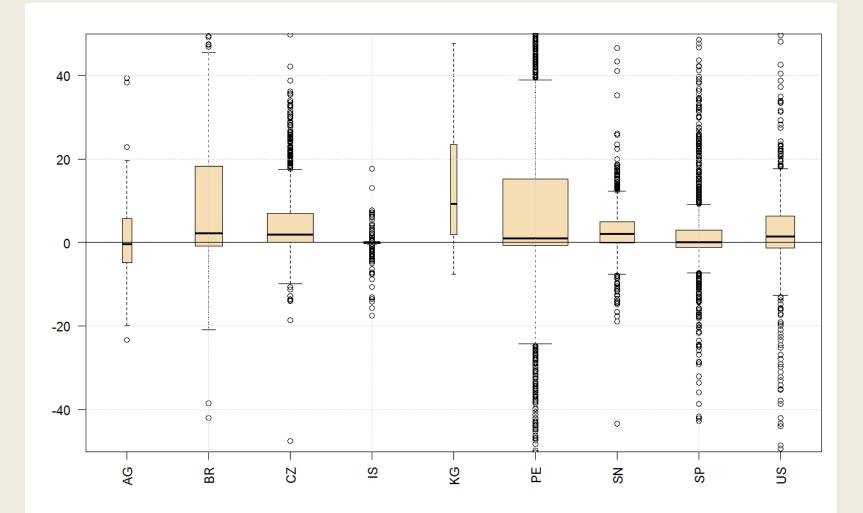

- The ratio series AWS-CON are subject to quality control, and before the analysis obvious errors are removed
- Further, the series are inspected for internal inhomogeneities and— if necessary —the records are split into two or more homogeneous segments

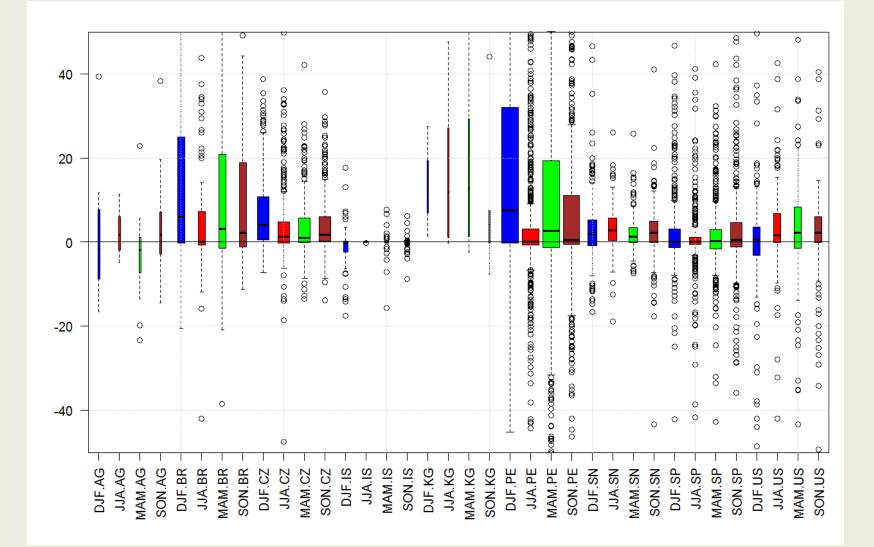




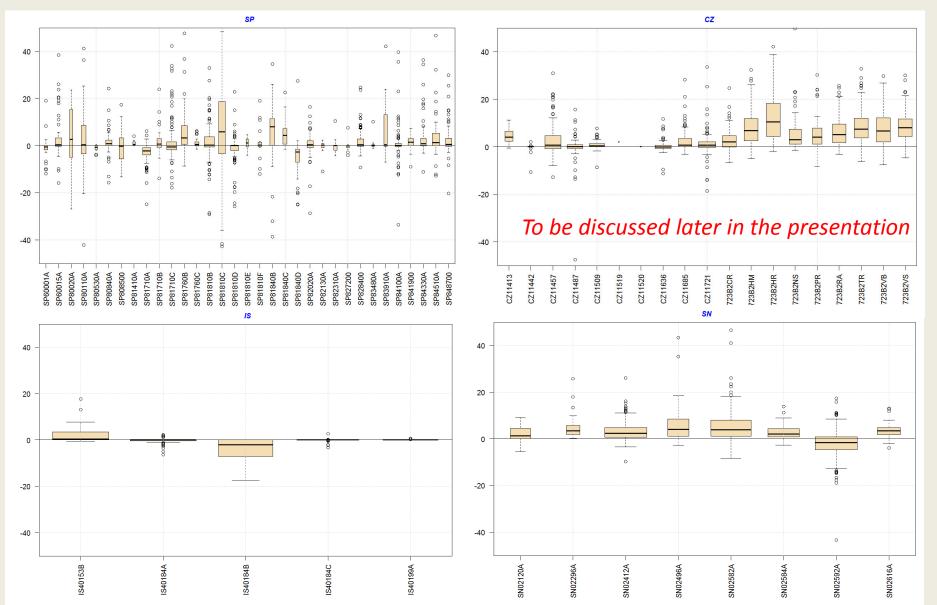




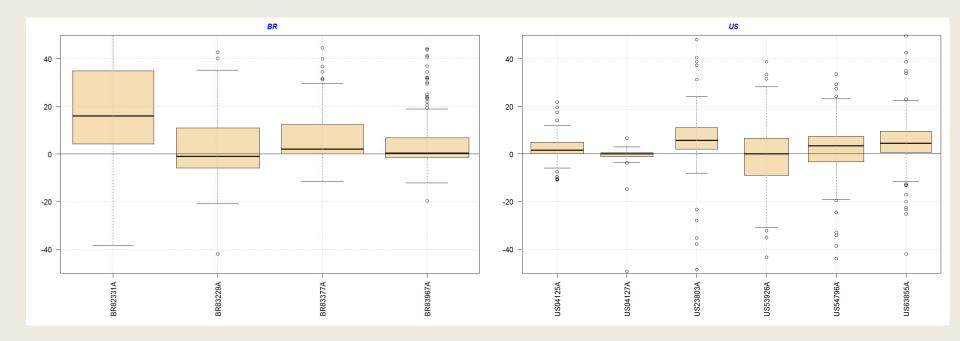


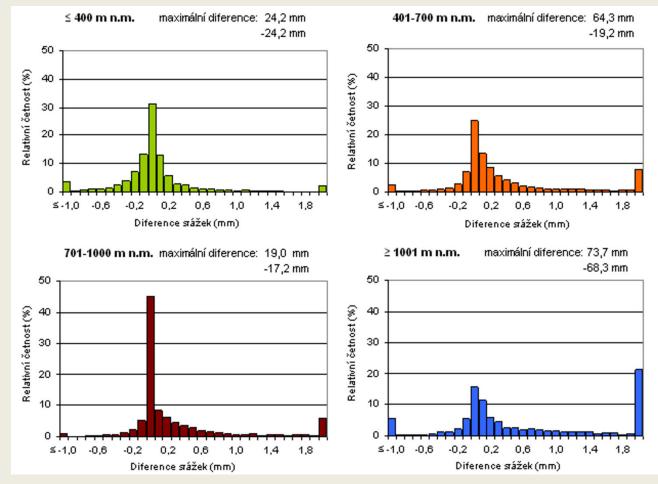


Differences in CON-AWS Monthly Sums for individual regions

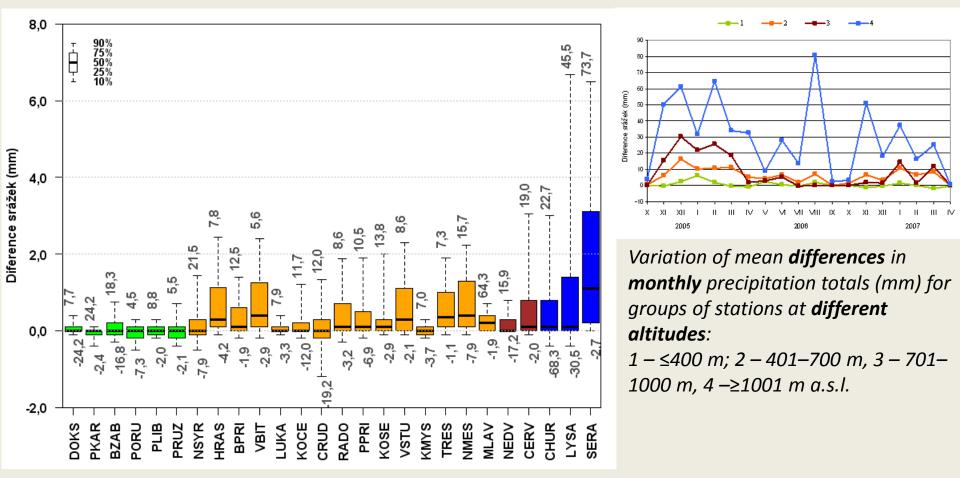


Note: boxplot width differs with number of available stations

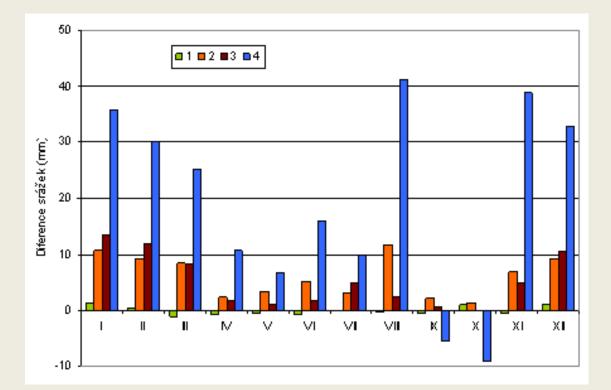

Differences in CON-AWS Monthly Sums for individual regions and seasons


Differences in CON-AWS Monthly Sums for individual stations, by countries

Differences in CON-AWS monthly sums for individual stations, by countries



Differences in CON-AWS montly sums for different altitudes, example from CZ


Relative frequencies (%) of the distribution of **differences** in **daily** precipitation totals measured by **CON** (METRA 886) and **AWS** (MR3H) rain-gauges for groups of stations at **different altitudes** in the period 1999–2007.

Differences in CON-AWS montly sums for different altitudes, example from CZ

Groups of stations at different altitudes: ≤ 400, 401–700, 701–1000, ≥ 1001 m a.s.l.

Differences in CON-AWS montly sums for different altitudes, example from CZ

Annual variation of **differences** in **monthly** precipitation totals (mm) measured by **CON** (METRA 886) and **AWS** (MR3H) rain-gauges for groups of stations at **different altitudes** $1 - \leq 400 \text{ m}; 2 - 401 - 700 \text{ m}; 3 - 701 - 1000 \text{ m}; 4 - \geq 1001 \text{ m}$) in the period 1999–2007.

Summary

- Different datasets poses different data quality (compare e.g. PE vs. BR)
- AWS generally underestimate precipitation compared to CON, this effect can be seen throughout the world
- There are differences between individual seasons
- Additional variables helps to understand seasonal differences
- Higher differences (biases) occur in connection with: solid precipitation, higher wind speeds (winter), thunderstorms (summer)

Acknowledgements And Further Work

- This study has been possible thanks to the kind contributions of many coauthors and their institutions.
- It will continue under the guidance of POST. More info about POST:

http://tinyurl.com/ISTI-Parallel

- Interested in joining us? Please Contact Victor Venema (<u>Victor.Venema@uni-bonn.de</u>)
- Can you contribute with dataset? Please contact Enric Aguilar (<u>Enric.Aguilar@urv.cat</u>)

General mathematical formulation of homogenization of climate data series

Tamás Szentimrey

Hungarian Meteorological Service

Content

Mathematics of homogenization of climate data series?

Critical remarks

Mathematical formulation of homogenization

- Definition of inhomogeneity of series
- Unconditional homogenization, theorems
- Relation with Quantile Matching methods
- Conditional homogenization, theorems
- Mathematical questions to be solved
- Special but basic case: Normal Distribution

What is in the practice?

- A popular procedure
- Relation of parallel observations and extremes
- An alternative procedure for mean and st. deviation
- Homogenization of standard deviation in MASH!

Mathematics of homogenization of climate data series?

There are several methods and software in meteorology but

- there is no exact mathematical theory of homogenization!
 Moreover,
- the mathematical formulation is neglected in general,
- -"mathematical statements" without proof are in the papers,
- unreasonable dominance of the practice over the theory.

No solution without advanced mathematics!

Theoretical questions

Mathematical formulation of homogenization of climate data series? What are the mathematical problems to be solved? And what is the solution? Evaluation of the mathematical base of the methods applied in practice?

The following contradiction is an often phenomenon at the methods: good heuristic ideas versus poor mathematics

The ratio of the problems to be solved: 90% mathematics, 10% meteorology

But at the methods applied in practice: 10% mathematics, 90% meteorology

Mathematical formulation of homogenization

Distribution problem, not regression!

Let us assume we have daily or monthly data series.

 $Y_1(t)$ (t = 1, 2, ..., n): candidate series of the new observing system

 $Y_2(t)$ (t = 1, 2, ..., n): candidate series of the old observing system

 $1 \le T < n$: change-point

Before *T*: series $Y_2(t)$ (t = 1, 2, ..., T) can be used After *T*: series $Y_1(t)$ (t = T + 1, ..., n) can be used Theoretical (!) cumulative distribution functions (CDF) $F_{1,t}(y) = P(Y_1(t) < y)$, $F_{2,t}(y) = P(Y_2(t) < y)$ $y \in (-\infty, \infty)$, t = 1, 2, ..., n

Natural change (annual cycle, climate change) Functions $F_{1,t}(y)$, $F_{2,t}(y)$ (t = 1, 2, ..., n) change in time!

Definition of inhomogeneity

The merged series

$$Y_2(t)$$
 (t = 1,2,..,T), $Y_1(t)$ (t = T + 1,..,n) is inhomogeneous,

if identity $F_{2,t}(y) \equiv F_{1,t}(y) (t = 1, 2, ..., T)$ is not true.

Homogenization

Adjustment, correction of values $Y_2(t)$ (t = 1, 2, ..., T)

in order to have the corrected values $Y_{1,2h}(t)$ (t = 1,2,..,T)

with the same distribution as the elements

of series $Y_1(t)$ (t = 1, 2, ..., T) have, i.e.:

$$P(Y_{1,2h}(t) < y) = P(Y_1(t) < y) = F_{1,t}(y) \qquad t = 1,2,..,T$$

Theorem for (unconditional) homogenization

i, Existence:

If
$$Y_{1,2h}(t) = F_{1,t}^{-1} (F_{2,t}(Y_2(t)))$$
 then
 $P(Y_{1,2h}(t) < y) = F_{1,t}(y) \quad (t = 1,2,..,T).$

ii, Unicity:

If h(s) is a strictly monotonous increasing function and $P(h(Y_2(t)) < y) = F_{1,t}(y)$, then $h(s) = F_{1,t}^{-1}(F_{2,t}(s))$.

Quantile Matching (QM) methods

The basis of these methods can be integrated into the general theory since the transfer function,

$$Y_{1,2h}(t) = F_{1,t}^{-1} \left(F_{2,t} \left(Y_2(t) \right) \right) \text{ is equivalent with,}$$

$$Y_{1,2h}(t) = Y_2(t) + \left(F_{1,t}^{-1}(p) - F_{2,t}^{-1}(p) \right)$$

where $F_{1,t}^{-1}(p)$, $F_{2,t}^{-1}(p)$ are the quantile functions
and $F_{2,t} \left(Y_2(t) \right) = p$.

However the QM methods developed in practice mainly for daily data are very weak empiric methods. It is not real mathematics! (good heuristics with poor mathematics; brave people!)

Conditional homogenization based on given events

Let $B = \{B_j : j = 1, 2, ..., M\}$ be a complete system of events:

$$B_i \cap B_j = \emptyset$$
, $\sum_{j=1}^{M} P(B_j) = 1$ (e.g. macrosynoptic weather situations)

<u>Conditional homogenization</u> of $Y_2(t)$ on given events B,

$$Y_{1,2h}(t,B) = F_{1,t,B_j}^{-1} \left(F_{2,t,B_j}(Y_2(t)) \right) \iff B_j \text{ occurs at } t \quad (t = 1,2,..,T)$$

where $F_{1,t,B_j}(y)$, $F_{2,t,B_j}(y)$ are the conditional distribution functions of $Y_1(t)$, $Y_2(t)$, given B_j , that is

$$F_{1,t,B_{j}}(y) = P(Y_{1}(t) < y | B_{j}), F_{2,t,B_{j}}(y) = P(Y_{2}(t) < y | B_{j})$$

$$y \in (-\infty,\infty), \quad t = 1,2,..,T$$

Then as a consequence of Bayes and total probability theorems: $P(Y_{1,2h}(t,B) < y) = F_{1,t}(y) \qquad y \in (-\infty,\infty), \ t = 1,2,..,T$

Mathematical questions to be solved

The simpler case: unconditional homogenization

The merged series are given: $Y_2(t) (t = 1, 2, ..., T), Y_1(t) (t = T + 1, ..., n)$

The transfer function is: $Y_{1,2h}(t) = F_{1,t}^{-1}(F_{2,t}(Y_2(t)))$ (t = 1,2,..,T)

Problems:

Estimation, detection of change point(s) *T*? Estimation of distribution functions $F_{1,t}(y)$, $F_{2,t}(y)$ (t = 1, 2, ..., T)?

- i, $F_{1,t}(y)$, $F_{2,t}(y)$ change in time (annual cycle, climate change)
- ii, No sample for $F_{1,t}(y)$ (t = 1, 2, ..., T)

The problem is insolvable in general case! Only relative methods can be used with some assumptions. In addition some simplifications are necessary.

Special but basic case: Normal Distribution (e.g. temperature) Theorem.

Let us assume normal distribution,

$$Y_1(t) \in N(E_1(t), D_1(t)), \quad Y_2(t) \in N(E_2(t), D_2(t)) \quad (t = 1, 2, ..., n)$$

 $E_1(t), E_2(t)$: means $D_1(t), D_2(t)$: standard deviations

Then the transfer function of homogenization:

$$Y_{1,2h}(t) = F_{1,t}^{-1} \Big(F_{2,t} \Big(Y_2(t) \Big) \Big) = E_1(t) + \frac{D_1(t)}{D_2(t)} \Big(Y_2(t) - E_2(t) \Big) \quad (t = 1, 2, ..., T)$$

Remarks:

i, A simple linear function and there is no "tail distribution" problem!ii, Only the mean (*E*) and standard deviation (*D*) must be homogenized!

What is in the Practice?

A popular procedure

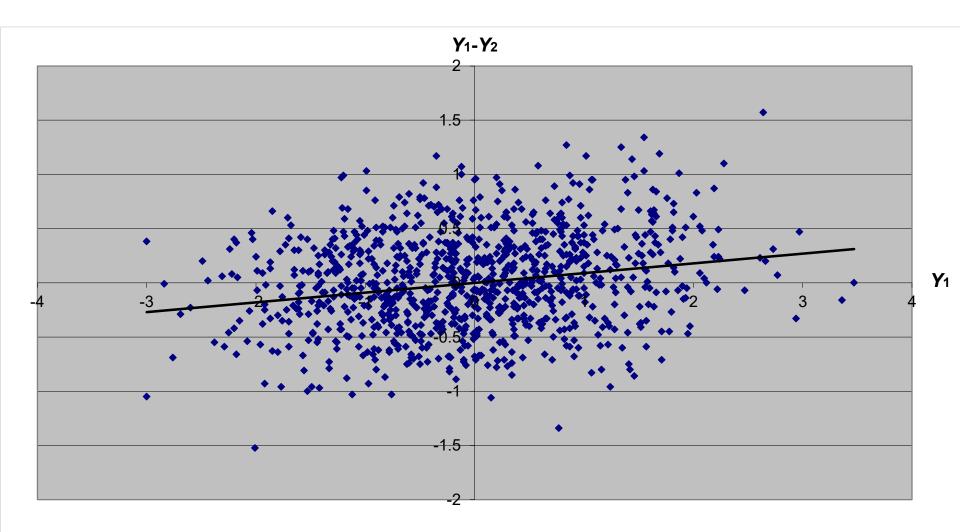
1. Homogenization of monthly series:

Break points detection, correction of mean

- Assumption: homogeneity of higher order moments (e.g. st. deviation)
- 2. Homogenization of daily series:
 - Trial to homogenize also the higher order moments
 - (Quantile Matching (HOM, RHtests), Spline (SPLIDHOM))
 - Used monthly information: only the detected break points

Contradiction

- Inhomogeneity of higher moments: daily: yes versus monthly: no ?
 It is not adequate mathematical model for st. deviation!
- Why are not used the monthly correction factors for daily homogenization?


What is the reason of this "popular procedure"?

An observed phenomenon at extremes

The differences of parallel observations are larger in case of extremes. What is this? Inhomogeneity in the tails of the distributions? No, this observed phenomenon has a simple and logical reason. The reason is that the extremes may be expected at different moments in case of parallel observations. It is a natural phenomenon. Or with other words, there maybe systematic biases in rank order!

An example is presented.

Example by Monte-Carlo method for natural dependence of $Y_1 - Y_2$ on Y_1 Generated series: $Y_1(t) \in N(0,1), Y_2(t) \in N(0,1), \operatorname{corr}(Y_1(t), Y_2(t)) = \rho = 0.9$ (t = 1,...,1000)Difference series: $Y_1(t) - Y_2(t), \quad E(Y_1(t) - Y_2(t) | Y_1(t)) = (1 - \rho) \cdot Y_1(t) = 0.1 \cdot Y_1(t)$

An alternative procedure

1. Homogenization of monthly series:

Break points detection, correction of the mean and standard deviation. The correction is based on the normal distribution transfer function. Assumption: homogeneity of higher order (>2) moments. This assumption is always right in case of normal distribution!

2. Homogenization of daily series:

Homogenization of mean and standard deviation on the basis of the monthly results. The used monthly information are the break points and the monthly corrections of the mean and standard deviation. **Developing of MASH for homogenization of Standard Deviation** (Multiple Analysis of Series for Homogenization; *Szentimrey*, *T*.)

Order of steps

- 1. Homogenization of Standard Deviation of data series
- 2. Homogenization of Mean of data series

Principles of Methodology

Multiple break points detection procedures for Mean and St. Deviation. Procedures based on **Test of Hypothesis.**

Confidence Intervals are also given for the break points. (make possible automatic use of metadata).

Estimation of the correction factors for Mean and St. Deviation. Estimation is based on **Confidence Intervals.**

15 Hungarian Annual Mean Temperature Series 1901-2014

Test Stat	tistics	for St. Devi	ation Be	fore Homog	enization
Critical	value (significance	level 0	0.05): 26.8	8
Series	TSB	Series	TSB	Series	TSB
7	141.13	11	50.79	14	33.13
6	28.19	12	26.07	13	24.93
5	22.69	2	22.11	4	21.54
1	20.87	3	19.44	10	17.46
9	15.31	8	11.74	15	10.26
AVERAGE	: 31	.04			

Test Sta	atistics	for Mean H	Before Hom	nogenizati	on
Critical	l value	(significar	nce level	0.05): 2	1.76
Series	TSB	Series	TSB	Series	TSB
12	1262.47	5	926.31	10	831.81
7	637.72	6	558.66	3	506.91
15	500.07	8	463.98	11	320.14
13	288.51	14	249.40	9	197.54
1	166.10	4	134.41	2	88.90
AVERAGI	E: 47	5.53			

17 Annual mean Maximum Temperature Series 1950-2007 (Network real 000005 of COST Benchmark)

Test Statistics for St. Deviation Before Homogenization Critical value (significance level 0.05): 21.00

Series	TSB	Series	TSB	Series	TSB
6	41.27	5	21.28	7	20.34
12	13.23	13	12.69	4	12.01
1	11.06	14	9.89	11	9.17
8	9.15	17	7.53	2	6.78
15	6.62	9	6.24	16	5.29
10	5.07	3	4.14		
AVERAGE :	11.	87			

Test Stat	tistics	for Mean B	efore Hom	ogenizatio	on
Critical	value	(significan	ce level	0.05): 20	0.91
Series	TSB	Series	TSB	Series	TSB
4	351.61	14	245.58	12	227.40
16	189.04	2	183.80	3	168.03
8	138.70	5	130.57	6	108.53
1	96.95	17	80.80	15	56.89
7	47.16	10	37.68	11	24.90
13	21.09	9	18.47		
AVERAGE	: 12	5.13			

15 Hungarian Annual Mean Temperature Series 1901-2014

Test Statistics for St. Deviation After Homogenization Critical value (significance level 0.05): 26.8

Series	TSA	Series	TSA	Series	TSA
7	28.19	12	27.66	14	26.34
5	24.13	2	22.11	4	21.54
1	20.87	3	20.54	10	18.92
6	18.18	11	15.61	13	14.96
9	14.85	15	12.53	8	11.74
AVERAGE :	19.8	88			

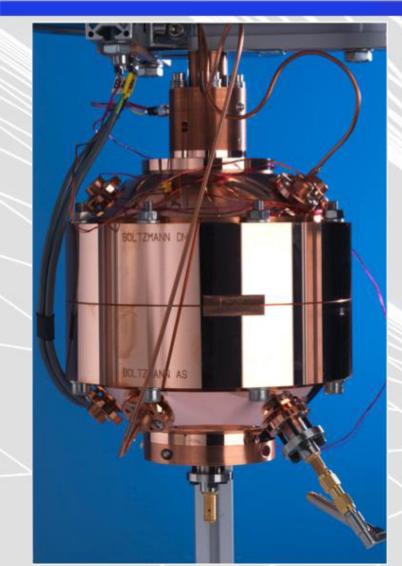
Test Statistics for Mean After Homogenization Critical value (significance level 0.05): 21.76 TSA Series TSA Series Series TSA 11 32.81 13 31.46 9 29.11 12 27.27 8 25.37 7 25.29 1 21.91 5 22.93 4 21.85 10 21.45 14 21.04 3 19.12 2 6 18.96 15 17.23 18.52 AVERAGE: 24.09

There is no royal road!

Thank you for your attention!

The International Surface Temperature Initiative – progress, future developments and how countries can contribute

International Surface Temperature Initiative


29 October 2015

Peter Thorne, **Blair Trewin**, Victor Venema, Jay Lawrimore, Kate Willett, with thanks to many initiative participants

History and purpose of ISTI

- ISTI was created following a CCI resolution in 2010
- Goal is to have an open, transparent and traceable data set with maximum global coverage
- Aiming for data at a range of timescales (monthly, daily, sub-daily)
- Governance through a steering committee and subject-matter working groups
- Not a formal WMO program, but has considerable involvement from NMHSs, as well as other institutions, and experts from other relevant fields (e.g. statistics, metrology)

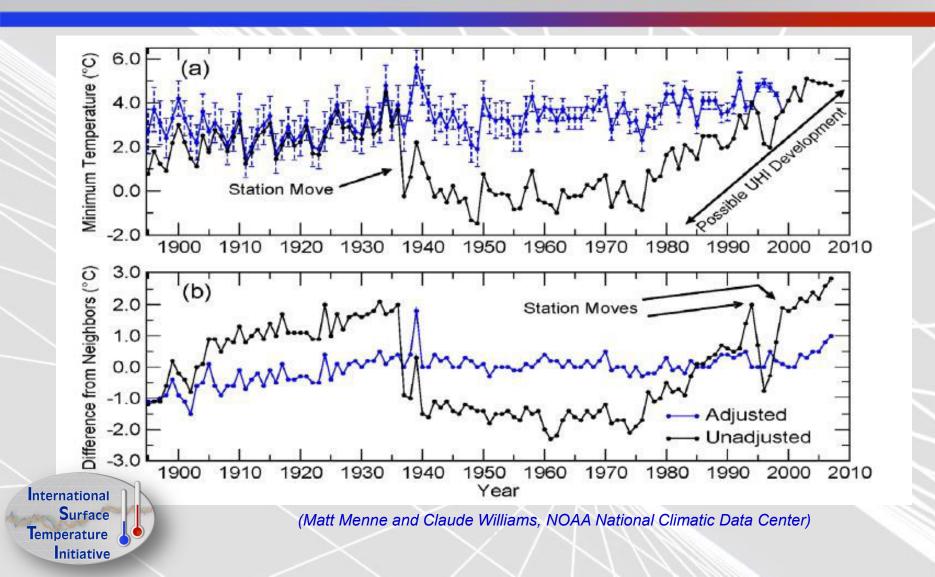
The real world observing system is not the lab ... we are not dealing with 10^{-N}K

Michael de Podesta's 'Instrument of real beauty'

Image courtesy Michael de Podesta, NPL

It's not, in general, these either ...

It's more like these ...

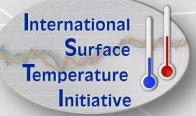


Huge range of instrument types, siting exposures etc. regionally, nationally and globally with many changes over time.

Various sources online

Inhomogeneities: annual mean minimum temperature at Reno, Nevada, USA

The long list of issues to be considered ...


- Station moves
- Instrument changes
- Observer changes
- Automation
- Time of observation biases
- Microclimate exposure changes
- Urbanization
- And so on and so forth ...

Underlying which are two absolutely fundamental issues ...

- A lack of traceability to absolute or relative standards for most, if not all, of the historical records
- A lack of adequate documentation of the (ubiquitous) changes sufficient to characterize on a station by station basis in an absolute sense their changing measurement characteristics.

ISTI: Creating a framework to enable advances

- The International Surface Temperature Initiative can put in place certain structures to enable science advances
 - 1. Basic environmental data provision
 - 2. Creation of independent means to benchmark and assess
 - 3. User advice
- The rest is down to the global science community

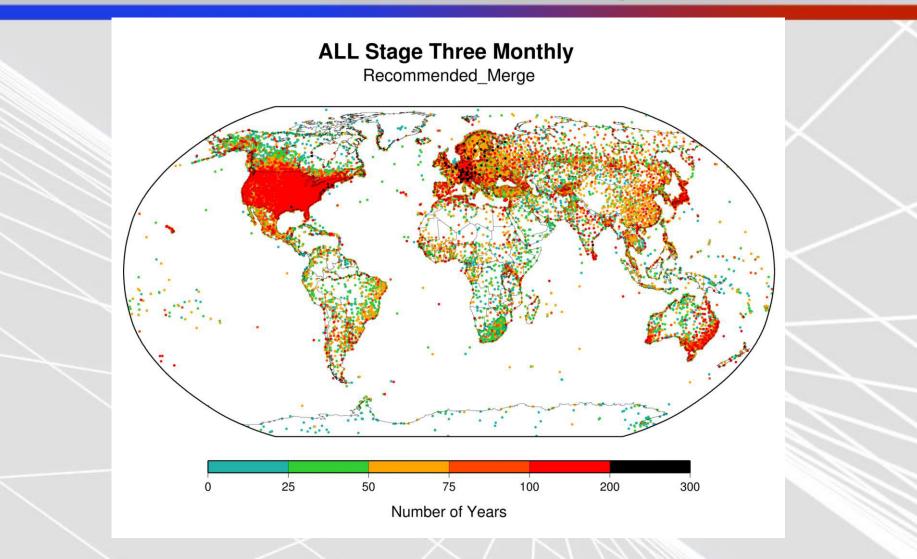
Step 1: Data rescue and provision

International Surface Temperature Initiative

Jay Lawrimore, Jared Rennie and Peter Thorne (2013) Responding to the Need for Better Global Temperature Data, EOS, 94 (6), 61–62 DOI: 10.1002/2013EO060002

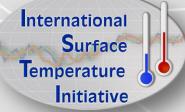
Stage 0 / Stage 1 Overview and Metadata

- Stage 0: Original observation
 - Scanned Images of paper record (PDF / JPG)
 - Not always available
 - Conversely, a lot of data <u>only</u> exist on paper (or as scanned images) – still a great need for data rescue
- Stage 1: Native keyed format.
 - Databank policy encourages data be provided in its rawest form; that closest to the measurements that were first reported by the observer.
 - Ideally no quality control or homogenization should be applied prior to submission
 - Other Requirements
 - Any time scale (monthly / daily / hourly)
 - Metadata: latitude, longitude, elevation, name
 - Other metadata: ID, country of origin, instrumentation



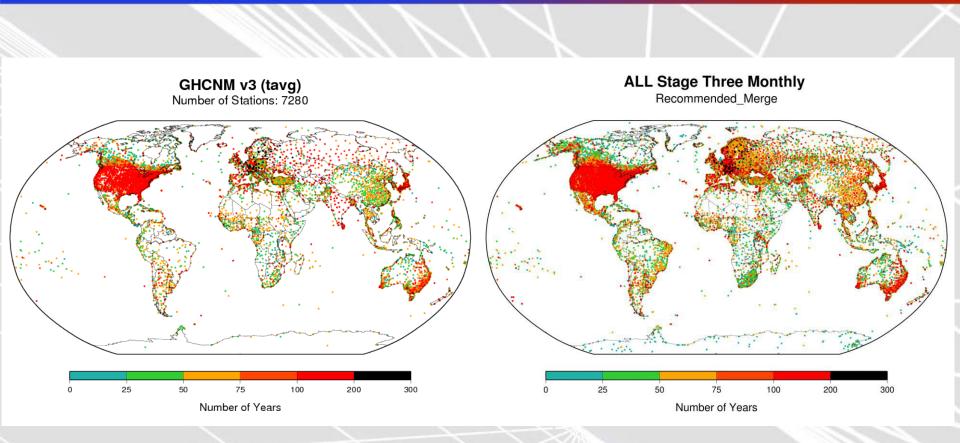
800			end I marke		
Comple Image Result for Arts.	will been see	LUU		nds. n'Acapulradat = 1 HDHO - Bdu	cation - Data Bu
A = The //Re redc toal	prv/pub/data/globaidatabank	Marty/stage1/mexicd.Ac	apu/co.dut	· · · · · · · · · · · · · · · · · · ·	(p
C Indust Mile 3.8 Capture	7.100				
HERE HATANGCO	(91)97101				
HR00034192103011 2491423 HR00034192103021 2541823	213	221	2391823 2321923	21823	1 BW 5.11828 1 BW 6.11827
M#00034192181031 2491823	253	224	2241825	41423	3 89 4.81423
HE00036292101041 2641823	245	242	2443823	41823	1 0 9.11823
XX00034392103041 2411423	26.3	250	2161823	83823	1 8 5.11823
8800036192101071 2811823	283	240	2621825	01823	1 5 4.41821
XX00036192101081 2011823	267	254	2543823	61822	1 8 4.81820
KK00036192101101 2631423	283	214	2421423	21823	1 W 6.11823
RE00034192103513 2811423	295	254	2541823	21823	1 0 5.11823
NX00036192101121 2451821	247	254	2401423	61823	3 W 5.11823
HE00036192101131 3091823	247	254	2061823	21823	1 9 4.11823
ME00034192101141 2841823	283	210	2601823	21823	1 9 4.41923
AB00034192151181 2641823	247	2.14	2381823	21823	1 88 5,11828
MK00636192101171 2541823	257	236	2341823	61823	1 ¥ 1.41823
MEGOGANIPEISIAN DADIADA	215	332	2132423	01473	1 9 4.41825
##05034192101201 2431422	285	258	2421823	81823	1 50 4.41423
MA00034192101211 2471833	276	248	2481823	81823	1 9 5-11823
ME00036193101221 2641823	287	248	2482423	51823	1 9 4.11823
MECODIALNEISEEL 2531823	285	238	2251623	31823	1 8 1.41821
MR00034192101251 2741823	275	245	2681823	31822	1.89 5.11823
ME00036192101241 2051823	294	248	2601823	31823	1 ¥ 5.71822
NK00034192101271 2841823 NK00034192101281 2471423	247	343	2421823 2381823	31823	1 80 5.71423 1 ¥ 5.11423
				51823	
HE00036192101301 2791823	298	273	2521423	55923	1 # 5,11423
HE00034192101311 2041823 HE00034192101011 2290423	287	255 2567623	2481823 2070433	101823	1 HW 4,11023 1 HW 3,40623
MR00034192101011 2390413 MR00034192103021 2360423		2080423	2070633	50623	1 NW 3,00423
XX65034192101051 2190455		2021423	2030423	21623	1 88 3,00423
HX00036192105041 2310423		2205623	2250623	70423	1 8 3.00423
MR00034292103055 2490433 MR00036292103061 2410423		2220423 2220423	2222623	00423	1 W 8,80623 1 W 8,80623
W#00034192101071 2401421		2345423	1380423	25623	1 80 4.10423
HE01036192101081 2530623			2280623	89423	
ME00034192181081 2440423		2202623	2300623	60423	1 88 1,60623
MR00036192101111 2565633		2240423	3140433	87623	1 89 4.00623
					1 8 5.20422
HX00034197105531 2390423		2440423	2210423	00423	1 # 4,95423
MR00034192101141 2500433 MR00034192101351 2540433		2420433	2640623	60623 01623	1 #2 1,40423
ME00034192181171 2338423		2100423	2200423	00423	1 8 1.40423
X800036282101181 2190423 8800036282103181 2440423		2040423	2040623 2340623	00623 20623	1.80 4,80829 1.8030,20423
MR00034192101201 2240425		1020623	2740623	65623	1 8 1.00420
MK00034192101221 2240423		2040623	2070423	40523	1 88 0.40422
HE00034192101221 2440423		2160423	2290623	00623	5 NE 0.50423 1 NM 4.60423
ME00036192101231 2290623		2100423	2020623	20623	1 2 0.40433
HE00036192101251 2298423		3105433	2170623	30423	1.80 1.40420
		2220423	3230623	00423	3 # 1.30423
NE00036192101271 2440423		2200433	2120423	00423	1 N 1,79422 1 NE 1,79420
ME00034192101281 2347423		2547423	2240423	00423	1 8 4.40422
ME00036192101301 2470423		2201423	2220623	31623	1 8 4.10423
MR00034192101311 3290423	891400 2422100	2040423	2270423	05623	
	\$51455 2422100 \$71455 2382100		2250700 2321400 2272100		1 8W 4,40700 1 8W 4,80700
ME00034192101031 2440700 2	\$71400 2392100		2220700 2471409 2252109		
MR00034192151041 2490700 1	891400 3483100		2320700 2743400 2272100		1 8 4.10700 1
NE00036182100051 2550700 2 NE00036182101061 2470700 2	971400 2572100		2120700 2671400 2342100 2240700 2451400 2200700		1 80 4,10700
MX00034192101041 2470700 1			2280700 2851400 2202100		1 2 4,80700 1
ME00034192183041 2590700 1	091400 2492100		2380700 2821400 2322105		1 W 4.40700 1
XX00034193101091 2490700 3			2340700 2801400 2322100 27887700 2801400 2322100		1 50 4.40700
	011400 2452100		2260700 2861400 2262100		1 80 4,40700 1
MEDDO36192181121 2540700 2	F#1400 2532100		2340700 3821400 2263108		1 8.4.90700 1
MR00036182101131 2470700 1	051408 2572108		2340700 2841405 2242108		
MK00038192101141 2440700 1			2445700 2841400 2343100		1 89 4,10700 1
ME00036192101161 2230700 2	941400 2532100		2180700 2821400 2402108		1.40.4.10700
##000341#2101171 2486700 1	041450 2472150		2320700 2741400 2272108		
ME00036192101381 2490700 1	392400 2442100		2158700 2921400 2322304		1 88 4,60700
					1 80 5.90700

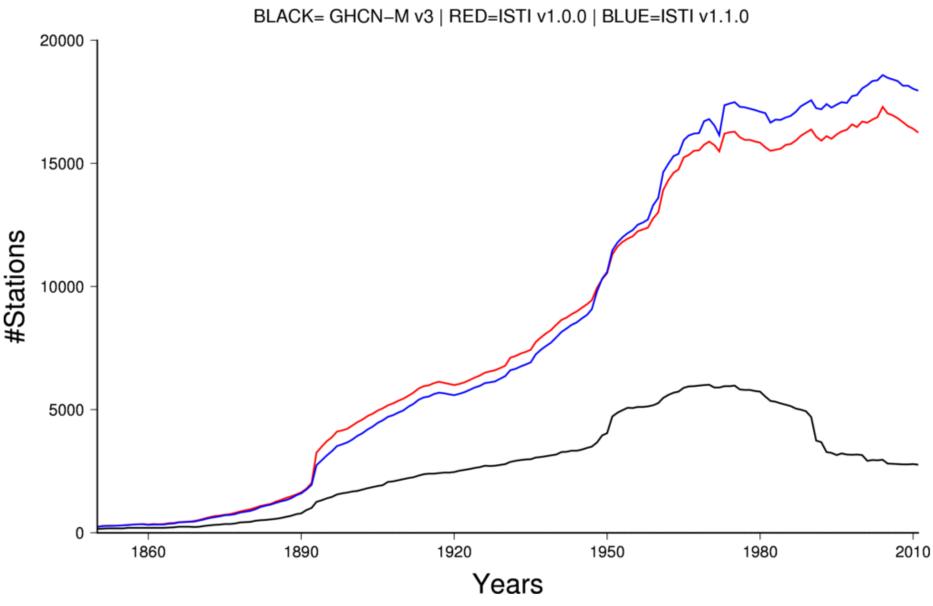
Data Provenance Tracking Flags


- Data source for Stage 0 Files
 - NCDC, JMA, BOM
- Data source for Stage 1 Files
 - NCDC, NMA's, other international organizations
- Type of data sent by source
 - Raw, quality controlled, bias corrected
- Mode of Digitization
 - SourceCorp, CDMP, Local Originator
- Mode of converting hourly data into daily data
 - Main standard synoptic times, intermediate synoptic times, other
- Method of converting daily data into monthly summaries
 - How many days used to calculate monthly average

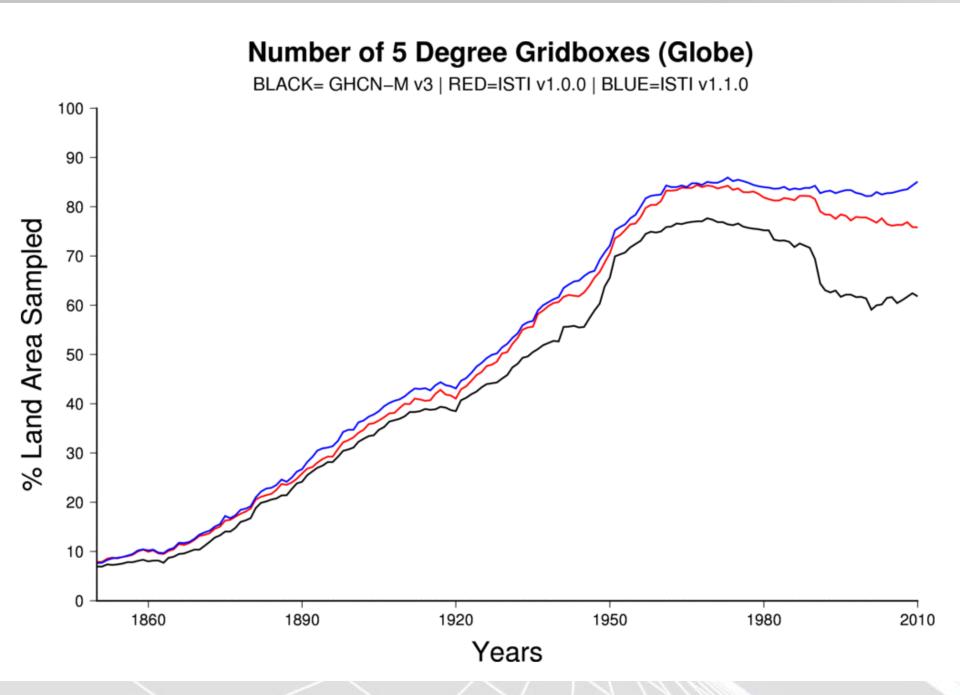
The version 1.1.0 databank (released 15 October 2015)

Stage 3 merging program

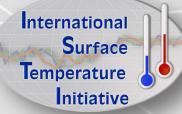

- Take all *monthly* sources and combine them into one complete global dataset
- Metadata matching and data equivalence criteria
- Code is readable, portable, and modular need an automated method due to large number of stations
- Recommended product, along with several variants to characterize uncertainty
- Results placed on FTP
 - <u>ftp://ftp.ncdc.noaa.gov/pub/data/globaldatabank/monthly/stage3</u>


Source hierarchy

- More than 100 sources received
- Certain sources need to be given a higher preference, so that no valuable information is lost
- ISTI has developed a set of criteria that dictates the hierarchy for the recommended merge
- In addition, some grossly overlapping sources aren't considered, to avoid excess duplication


How does ISTI coverage compare with other global data sets?

Number of Stations

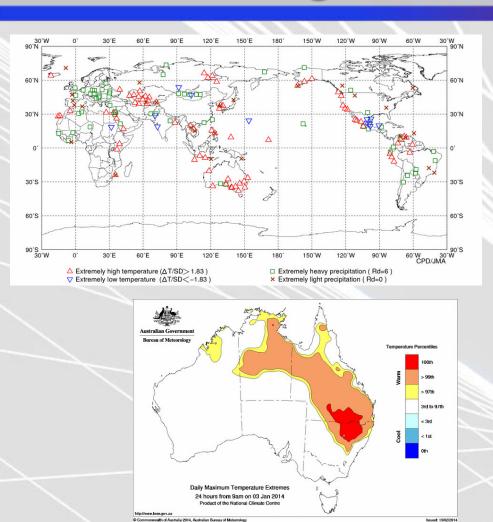


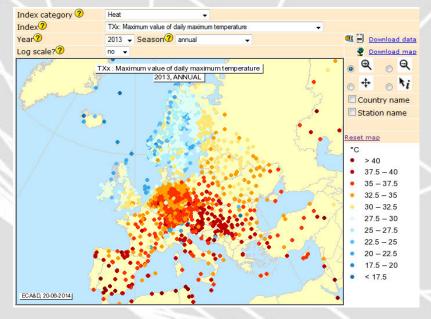
Station Length Histogram GRAY=Stage Three (recommended) | RED=GHCN-M V3 Count Station Length (Years)

Homogenisation and benchmarking

- A major part of ISTI is providing a platform for benchmarking homogenisation methods.
- With real world data we do not have the luxury of knowing the truth – we CANNOT measure performance of a specific method or closeness to real world truth of any one dataproduct.
- We CAN focus on performance of underlying algorithms (AKA software testing) - consistent synthetic test cases, simulating real world noise, variability and spatial correlations potentially enable us to do this.

Benchmarks

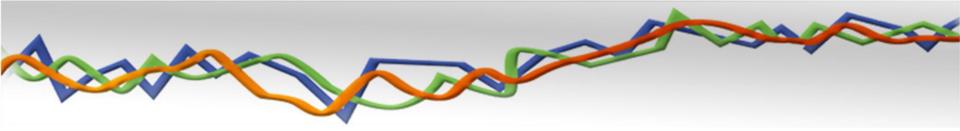

- Global benchmarks that mirror the databank holdings will be made available in 2016
 - 8-10 versions, with a subset open but most closed
 - Realistic intra- and inter-station statistics for each but distinct added data artefacts to be removed
- Benchmarks will be available for c.2 years for analysis
- Then the closed benchmarks will be unveiled and different algorithms assessed by benchmarking group.


International Surface Temperature Initiative

Some of the challenges facing ISTI

- Needs countries to make data available data policy is moving slowly towards open data at both national and WMO levels, but still a long way to go.
- ISTI has virtually no resources of its own.

ISTI – potential to be a basis for global and regional data products?



How countries can contribute

- Making data (especially daily data) available to ISTI
- Participating in data rescue activities
- Participating in the benchmarking project

To make arrangements for data submissions (in any reasonable format), contact data.submission@surfacetemperatures.org

Questions and Answers

www.surfacetemperatures.org

Bull. Amer. Met. Soc. doi: 10.1175/2011BAMS3124.1

https://www2.image.ucar.edu/event/summerprog.surfacetemps

Peter.thorne@nersc.no

Data.submission@surfacetemperatures.org

Efficiency tests for automatic homogenization methods of monthly temperature and precipitation series "MULTITEST"

Peter Domonkos¹ and José A. Guijarro² ¹Centre for Climate Change, University Rovira i Virgili, Tortosa, Spain, e-mail:dpeterfree@gmail.com ²Spanish Meteorological Agency (AEMET)

Aims of MULTITEST

- Testing of monthly homogenization softwares with larg test datasets of varied climatic and inhomogeneity properties and identifying the best performing methods;
- Clarifying the relations between efficiencies and test dataset characteristics;
- Finding the minimum conditions for automatic methods in terms of the number of comparable time series, their length and their spatial correlations;
- Providing a large size benchmark dataset for the climatological community characterizing the observed climate of various geographical regions;

Scope of MULTITEST

- Efficiency tests for the homogenization of monthly temperature and monthly precipitation datasets;
- Only automatic methods or semiautomatic methods with default parameterization will be tested;
- Wide range of test dataset properties:
 - climate,
 - network density,
 - inhomogeneity properties,
 - length of time series,
 - missing data fields.

Important and timely (?)

- Variability of monthly and annual means is still an important issue;
- Methodology is better developed for monthly and annual scale data and the potential improvement of data quality is the clearest with the homogenization of annual and monthly data;
- The HOME benchmark with its 15 networks was too small and could not include the examination of the impact of various dataset properties;
- There are new softwares, which should be tested;
- Most inhomogeneities cannot be quantified with parallel measurements.

Evaluation of efficiency

- Centred RMSE of monthly values;
- Centred RMSE of annual values;
- RMSE of trend bias;
- RMSE of network mean trend bias.

Principles of methodology

- Parent networks of at least 100, spatially well correlating time series are built, then subsets of preset size are randomly selected;
- Both real data based and synthetic test datasets are used;
- Forms of inhomogeneities: shift, trend, platform;
- True frequency of inhomogeneities is usually higher than that of the detected frequency;
- Inhomogeneity properties are widely varied.

Homogeneous benchmark

- Regional differences of climate is more important for precipitation than for temperature;
- Real data based section of benchmark:
 - advantage: it characterizes best the spatial temporal structures of observed data;
 - drawback: presence of residual inhomogeneities;
- Synthetic section:
 - advantage: fully homogeneous;
 - drawback: imperfect spatial-temporal structures

Homogeneous benchmark

- Temperature, real data based section

 USA data, Rachel Warren's dataset
 Spanish data (AEMET)
- Temperature, synthetic section
 - Spatially correlated white noise, 3 versions of predominating spatial correlations

Homogeneous benchmark

- Precipitation, real data based section
 - Mediterranean climate: Mallorca (AEMET)
 - oceanic climate: Ireland (Met Éireann)
 - continental climate: CARPATCLIM gridded observational data (www.carpatclim-eu.org)
- Precipitation, synthetic section
 - Climate of northern Spain, two versions of predominant spatial correlations
 - Monsoon climate, modelling climate of India, two versions of predominant spatial correlations

Parameterization

- Length of time series: 30yr, 60yr, 120yr
- Number of time series in network: 4, 5, 7, 10, 25, 40
- Missing data: **0%**, 10%, 30%; 25 series & 70% missing data
- Form of inhomogeneities: shift, trend, platform
- Three kinds of standard dev. of inhomogeneities (low, medium, high)
- Frequency in 100yr
- Frequency of shift
- Frequency of trend
- Frequency of platform
- Seasonality of biases:

Temperature			Precipitation		
3	5	7	1	3	
1			1		
1	3	10	1	3	
- semi-sinusoid		- no	seasonality		

- other - winter biases differ

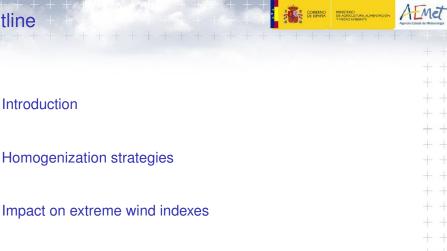
Interactive contact and transparency

- New softwares are accepted for testing until the end of 2016
- Parent benchmark will be published at the beginning of 2017
- Datasets of selected experiments will be published

Thank you for your attention!

MINISTERIO DE AGRICULTURA, ALIMENTACIÓN Y MEDIO AMBIENTE

Homogenization of daily peak wind gust series from Spain and Portugal


José A. Guijarro¹, Cesar Azorin-Molina²

¹State Meteorological Agency (AEMET), Palma de Mallorca, Spain ²Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain

EUMETNET Data Management Workshop St. Gallen, Switzerland, 28-30 October 2015

Outline

+ +

Conclusions

> < ∃⇒ э

+ +

+ +

 Homogenization of daily series is difficult, due to their lower noise/signal ratio.

- Yet the study of the variability of extreme weather events requires homogeneous and quality controlled daily series.
- Here we apply different strategies to homogenize daily maximum gust speeds from Portugal and Spain, and analyze their impact on the evaluation of the trends of mean and maximum gusts, the number of days over the 9 percentile and maximum expected gusts for return periods of 50, 100 and 200 years.
- Question:

+ +

AEMet

+ +

- Homogenization of daily series is difficult, due to their lower noise/signal ratio.
- Yet the study of the variability of extreme weather events requires homogeneous and quality controlled daily series.
- Here we apply different strategies to homogenize daily maximum gust speeds from Portugal and Spain, and analyze their impact on the evaluation of the trends of mean and maximum gusts, the number of days over the 9 percentile and maximum expected gusts for return periods of 50, 100 and 200 years.
- Question:

+ +

AEmet

+ +

- Homogenization of daily series is difficult, due to their lower noise/signal ratio.
- Yet the study of the variability of extreme weather events requires homogeneous and quality controlled daily series.
- Here we apply different strategies to homogenize daily maximum gust speeds from Portugal and Spain, and analyze their impact on the evaluation of the trends of mean and maximum gusts, the number of days over the 90 percentile and maximum expected gusts for return periods of 50, 100 and 200 years.
- Question:

AEMet Apercia Estatal de Mateorologia

+ +

- Homogenization of daily series is difficult, due to their lower noise/signal ratio.
- Yet the study of the variability of extreme weather events requires homogeneous and quality controlled daily series.
- Here we apply different strategies to homogenize daily maximum gust speeds from Portugal and Spain, and analyze their impact on the evaluation of the trends of mean and maximum gusts, the number of days over the 90 percentile and maximum expected gusts for return periods of 50, 100 and 200 years.
- Question:

Do we really need to homogenize the daily series?

COBERNO DE EMMAN VIEDOAMBENTE

- The data set consisted of 80 series (7 Portuguese and 73 Spanish) of daily maximum peak wind gusts spanning 54 years (1961-2014).
- Corresponding daily series from MM5 simulations at 10 km resolution were available until 2007 (Murcia University).
- Homogenization was performed with Climatol 2.2 (multiplicative model) on:
 - Average monthly values, using MM5 series as references when available, and adjusting the daily series with interpolated monthly correction factors.
 - Direct homogenization of daily values, using MM5 series as references when available.
 - Direct homogenization of daily values, without MM5 references
 - * # interences to the tortula and the term of t

- The data set consisted of 80 series (7 Portuguese and 73 Spanish) of daily maximum peak wind gusts spanning 54 years (1961-2014).
- Corresponding daily series from MM5 simulations at 10 km resolution were available until 2007 (Murcia University).
- Homogenization was performed with Climatol 2.2 (multiplicative model) on:
 - Average monthly values, using MM5 series as references when available, and adjusting the daily series with interpolated monthly correction factors.
 - Direct homogenization of daily values, using MM5 series as references when available.
 - Direct homogenization of daily values, without MM5 references

+ transfer to the start at the start at the start at the start of the

Met

+ +

- The data set consisted of 80 series (7 Portuguese and 73 Spanish) of daily maximum peak wind gusts spanning 54 years (1961-2014).
- Corresponding daily series from MM5 simulations at 10 km resolution were available until 2007 (Murcia University).
- Homogenization was performed with Climatol 2.2 (multiplicative model) on:
 - Average monthly values, using MM5 series as references when available, and adjusting the daily series with interpolated monthly correction factors.
 - Direct homogenization of daily values, using MM5 series as references when available.
 - Direct homogenization of daily values, without MM5 references.

Annual values of maximum and average wind peak gusts + + + + and number of days over the 90 percentile.

+ +

- The data set consisted of 80 series (7 Portuguese and 73 Spanish) of daily maximum peak wind gusts spanning 54 years (1961-2014).
- Corresponding daily series from MM5 simulations at 10 km resolution were available until 2007 (Murcia University).
- Homogenization was performed with Climatol 2.2 (multiplicative model) on:
 - Average monthly values, using MM5 series as references when available, and adjusting the daily series with interpolated monthly correction factors.
 - Direct homogenization of daily values, using MM5 series as references when available.
 - Direct homogenization of daily values, without MM5 references.

Annual values of maximum and average wind peak gusts + + + and number of days over the 90 percentile.

- The data set consisted of 80 series (7 Portuguese and 73 Spanish) of daily maximum peak wind gusts spanning 54 years (1961-2014).
- Corresponding daily series from MM5 simulations at 10 km resolution were available until 2007 (Murcia University).
- Homogenization was performed with Climatol 2.2 (multiplicative model) on:
 - Average monthly values, using MM5 series as references when available, and adjusting the daily series with interpolated monthly correction factors.
 - Direct homogenization of daily values, using MM5 series as references when available.
 - Direct homogenization of daily values, without MM5 references.

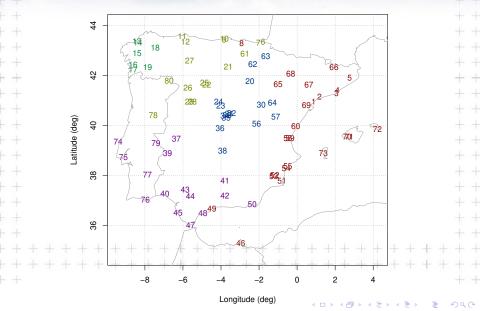
Annual values of maximum and average wind peak gusts + + + and number of days over the 90 percentile.

- The data set consisted of 80 series (7 Portuguese and 73 Spanish) of daily maximum peak wind gusts spanning 54 years (1961-2014).
- Corresponding daily series from MM5 simulations at 10 km resolution were available until 2007 (Murcia University).

+ +

- Homogenization was performed with Climatol 2.2 (multiplicative model) on:
 - Average monthly values, using MM5 series as references when available, and adjusting the daily series with interpolated monthly correction factors.
 - Direct homogenization of daily values, using MM5 series as references when available.
 - Direct homogenization of daily values, without MM5 references.

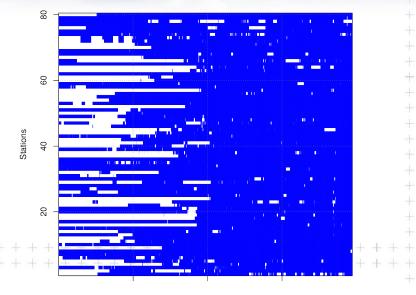
Annual values of maximum and average wind peak gusts + + + and number of days over the 90 percentile.


(日)

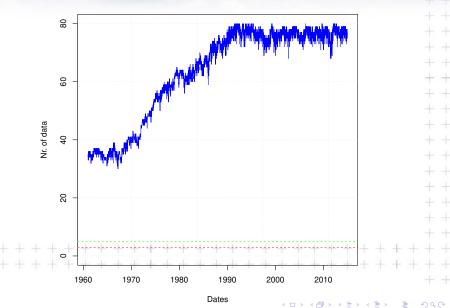
- The data set consisted of 80 series (7 Portuguese and 73 Spanish) of daily maximum peak wind gusts spanning 54 years (1961-2014).
- Corresponding daily series from MM5 simulations at 10 km resolution were available until 2007 (Murcia University).
- Homogenization was performed with Climatol 2.2 (multiplicative model) on:
 - Average monthly values, using MM5 series as references when available, and adjusting the daily series with interpolated monthly correction factors.
 - Direct homogenization of daily values, using MM5 series as references when available.
 - Direct homogenization of daily values, without MM5 references.
 - Annual values of maximum and average wind peak gusts and number of days over the 90 percentile.

Station locations

VX station locations (5 clusters)

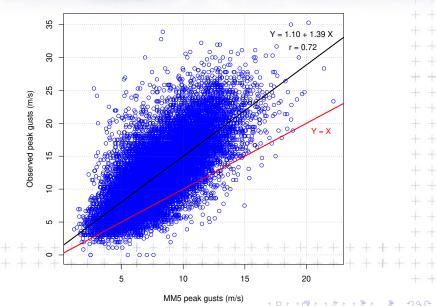


Data availability


▲□▶▲圖▶▲≣▶▲≣▶ ■ のQの

Data availability

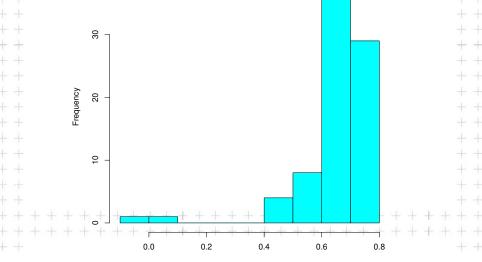
Nr. of VX-d data in all stations



Regression observations vs MM5

Zaragoza (1961–2007)

Correlations observations vs MM5

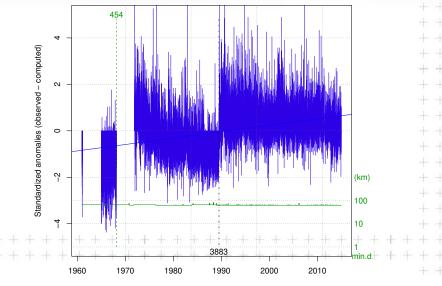

COBERNO DE EPANA MINISTERIO DE AGRICUATURA A MIDIO AMBENTE MENTACION AEA

< ∃→

< □ > < □ > < □ > < □ >

æ

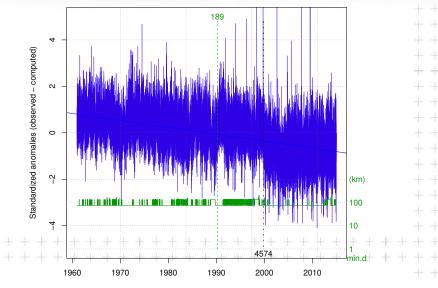
Correlations between observed and MM5 series



Inhomogeneities

VX-d at 2614(26), ZAMORA

Dates

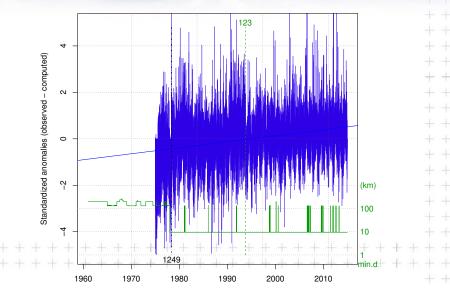

▶ ★ 臣 ▶ ★ 臣 ▶ ○ 臣 ● ⑦

Shift

VX-d at P535(75), LISBOA GEOFÍSICO

Dates

'표▶▲표▶ 표 ∽의

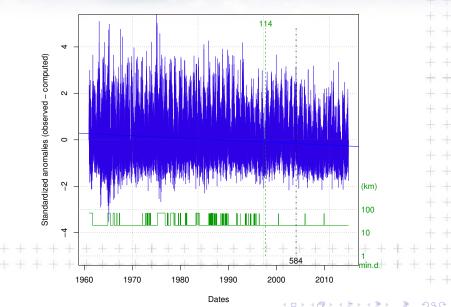

< 🗇 ▶

Trend

< 一型

Met

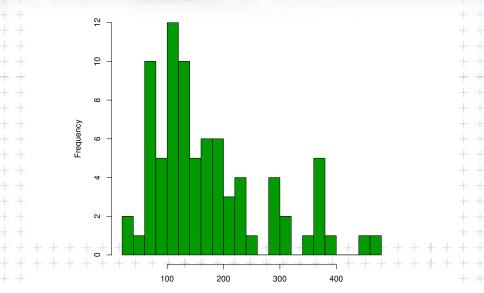
VX-d at B278(71), PALMA DE MALLORCA/SON SAN JUAN


Dates

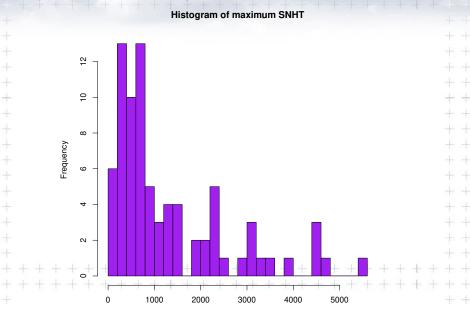
Relative homogeneity

VX-d at 1024E(7), SAN SEBASTIÁN, IGUELDO

Windowed SNHT histogram


Histogram of maximum tV

GOBIERNO DE ESPAÑA


<ロト <回 > < 注 > < 注 >

æ

MINSTERIO DE AGRICULTURA, ALIMENITACIÓN Met

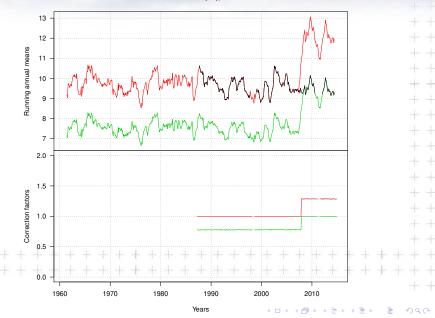
Complete SNHT histogram

Met

GOBIERNO DE ESPAINA

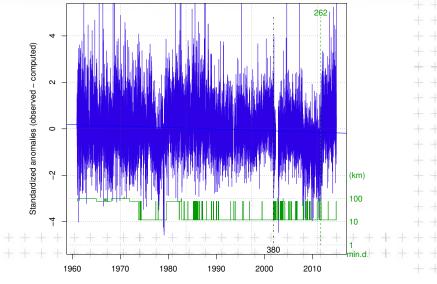
・ロト ・四ト ・ヨト ・ヨト

æ


MINSTERIO DE AGRICULTURA, ALIMENITACIÓN

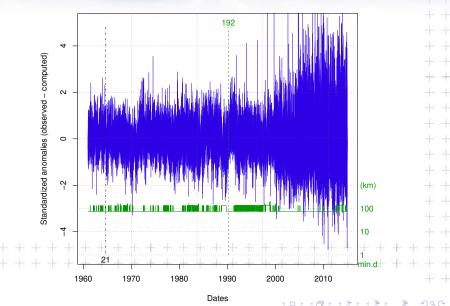
Abnormal series reconstruction

VX-m at 8368U(57), TERUEL



Residual inhomogeneities

Dates


《臣》《臣》 臣 '')의

Change of variance

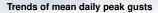
VX2-d at P535(75), LISBOA GEOFÍSICO

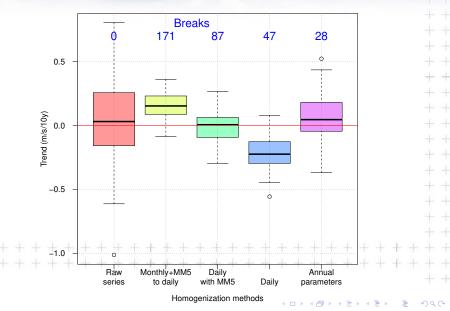
Other homogenizations

+ + + +

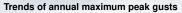
+ +

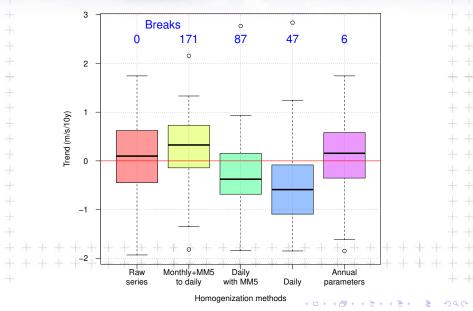
Due to these unsatisfactory results, further homogenizations were performed either directly on the daily data or on annual extreme wind indexes, which led to decreasing levels of break detection when compared to the monthly homogenization:


Series		Breaks		
Raw (filled)		-		
Monthly+MM5 to daily	171			
Daily+MM5		87		
Daily		47		
Annual indexes:	Averages	Maximums	Days>90%	
	28	6	25	

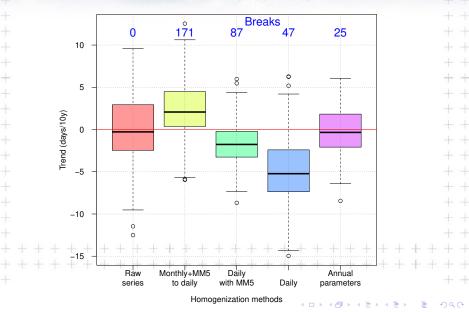

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Trends of mean peak gusts

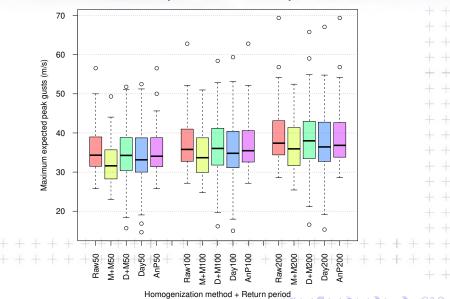




Trends of annual peak gusts



Trends of days > 90%



Trends of nr. of days with peak gust > 90 precentile

Max. expected peak gusts

Maximum expected peak gusts (m/s) for return periods of 50, 100 and 200 years

Conclusions

+ +

AEMet

+ +

- In many cases, there is no clear evidence suggesting that the homogenization of the daily series is needed (especially for computing trends of average values).
- But these results, derived from real data, cannot be conclusive, since we do not know the true solution.
- ► ⇒ Further experiments should be performed with synthetic data.

Conclusions

+ +

+ +

- + + + + + + + + +
- In many cases, there is no clear evidence suggesting that the homogenization of the daily series is needed (especially for computing trends of average values).
- But these results, derived from real data, cannot be conclusive, since we do not know the true solution.
- ► ⇒ Further experiments should be performed with synthetic data.

Conclusions

+ +

・ロット (雪) (日) (日)

э

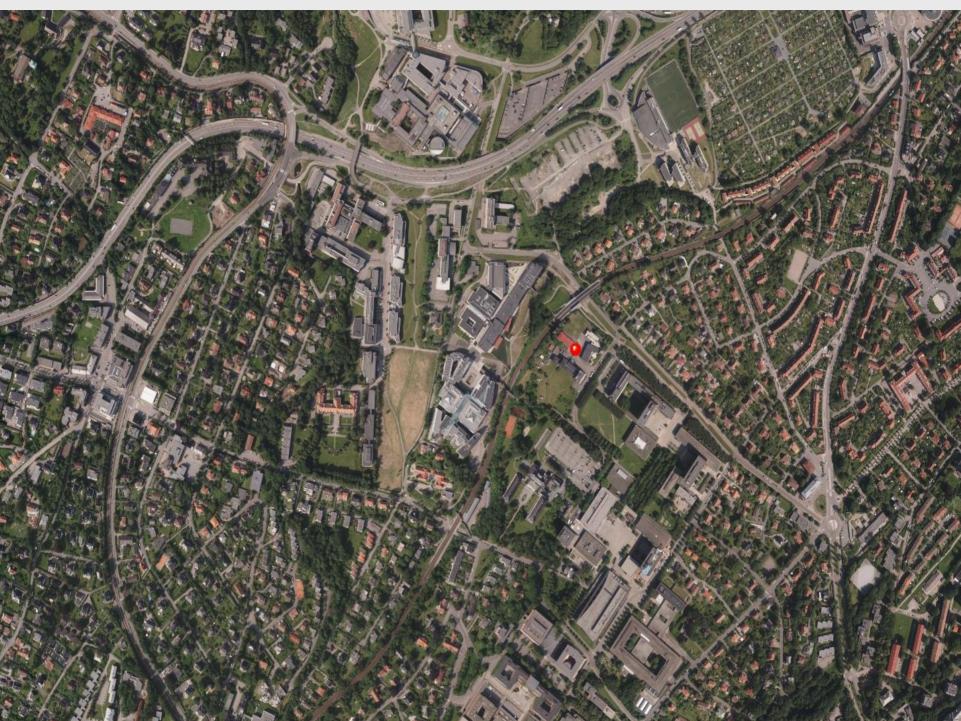
+ +

In many cases, there is no clear evidence suggesting that the homogenization of the daily series is needed (especially for computing trends of average values).

- But these results, derived from real data, cannot be conclusive, since we do not know the true solution.
- ► ⇒ Further experiments should be performed with synthetic data.

Norwegian Meteorological Institute

A daily homogenized temperature and precipitation data set for Norway


Elin Lundstad & Ole Einar Tveito Norwegian Meteorological Institute

29.10.2015

Oslo. Studenterhjemmet, Blindern.

8165 Enerett: Harstad.s Forlag

Foto: Harstad, Karl

Objectives

Establish a quality assurance tools to identify and adjust for homogeneity violation

Producing homogenized daily values of temperature and precipitation for a number of long climate series.

Develop methodology to generate "homogenized" daily values of precipitation and temperature for given locations / catchments based on gridded (1x1 km) map.

Facilitate homogenized daily values and analysis for homogenization so that it is available to external users, such as Statkraft.

Challenges with the methods

Adapted Caussinus-Mestre Algorithm for Networks of Temperature Series (ACMANT)

Multiple Analysis of Series for Homogenization Tamás Szentimrey

What is new?

- Former homogenization of monthly values
- Mostly temperature data of some stations
- Now homogenization of daily data
- and all the precipitation stations

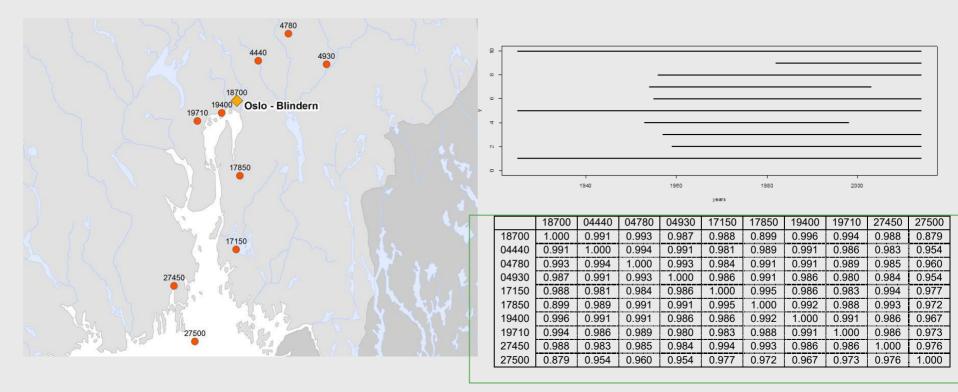
New methods and programs:

SPLIDHOM

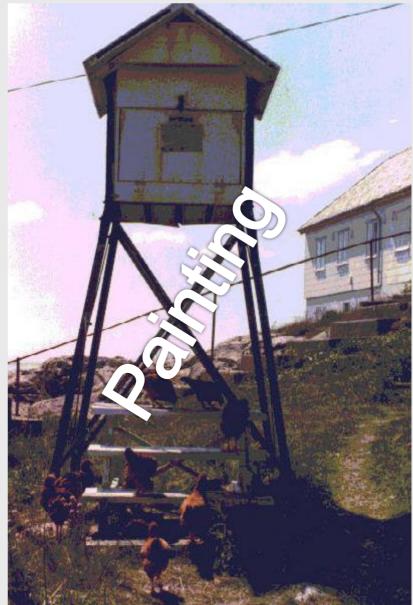
Station: 00018700 has no break. No need to homogenize! Returning to main menu.

Norwegian Meteorological Institute

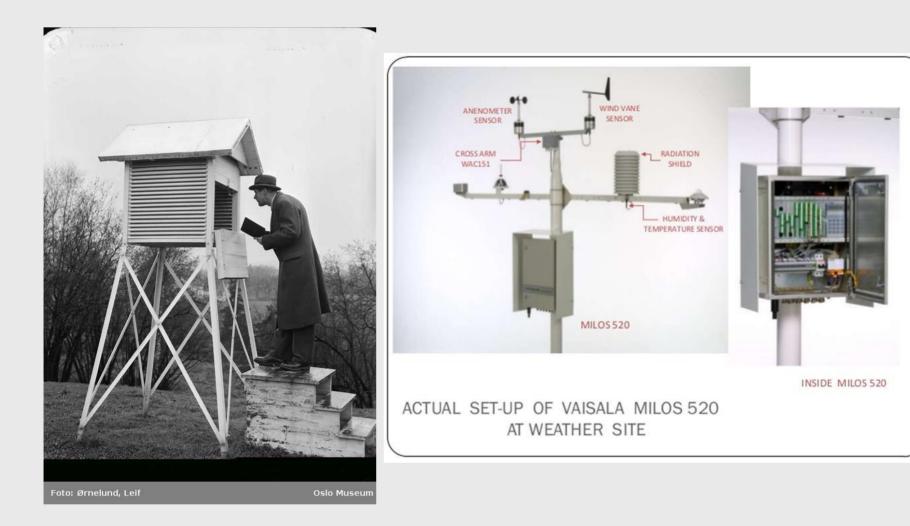
Locations/Network


Network Temperature	Breaks
 7 stations @Tromsø 	1
 7 @ Trondheim 	7
 12 @ Bergen 	3
 10 @ Kristiansand 	3
• 10 @ Oslo	3 or 4?
Precipitation	
 1 @ Bardufoss 	0
 Mo i Rana 	0
 Fokstua 	8
· Takle	1
· Sauda	0

Norwegian Meteorological Institute


Challenges

Network



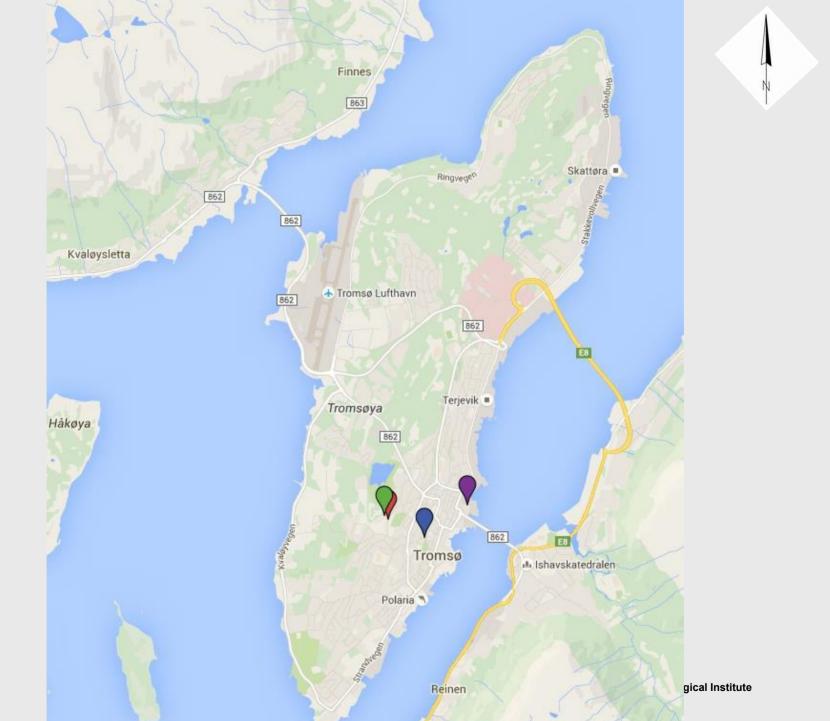
What causes the breaks?

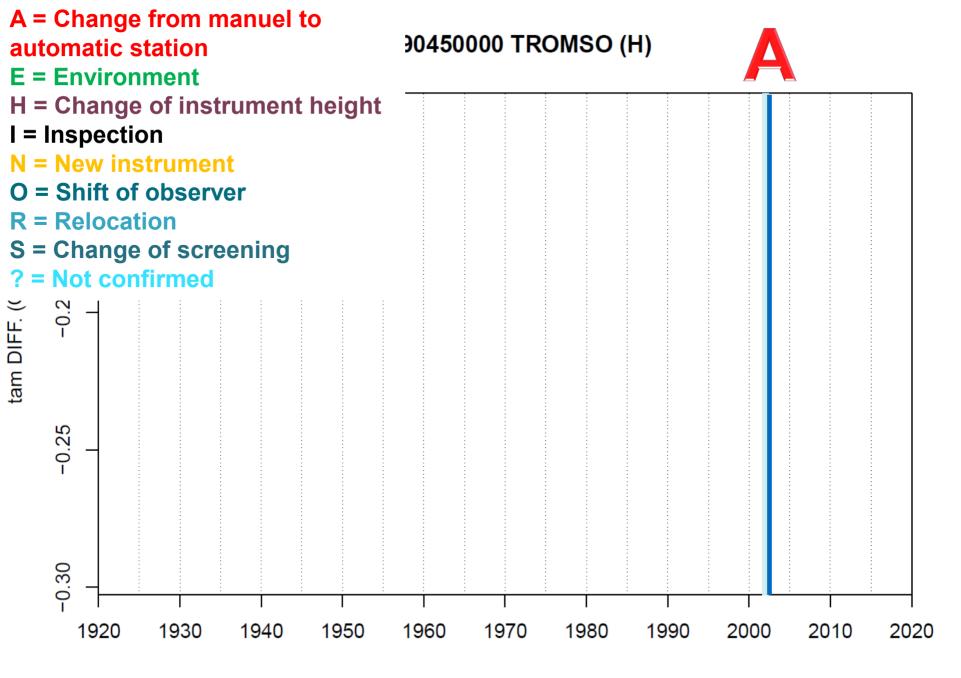
From manual to automatic WS

$MI-46 \rightarrow MI-74 \rightarrow MI-2001$

New buildings

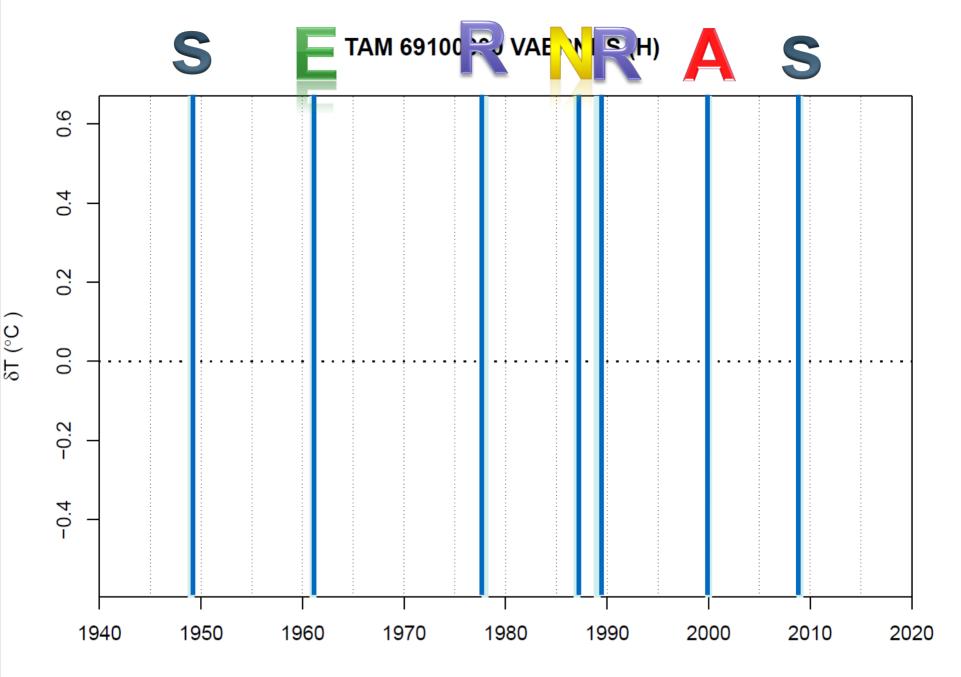
Vegetation grows



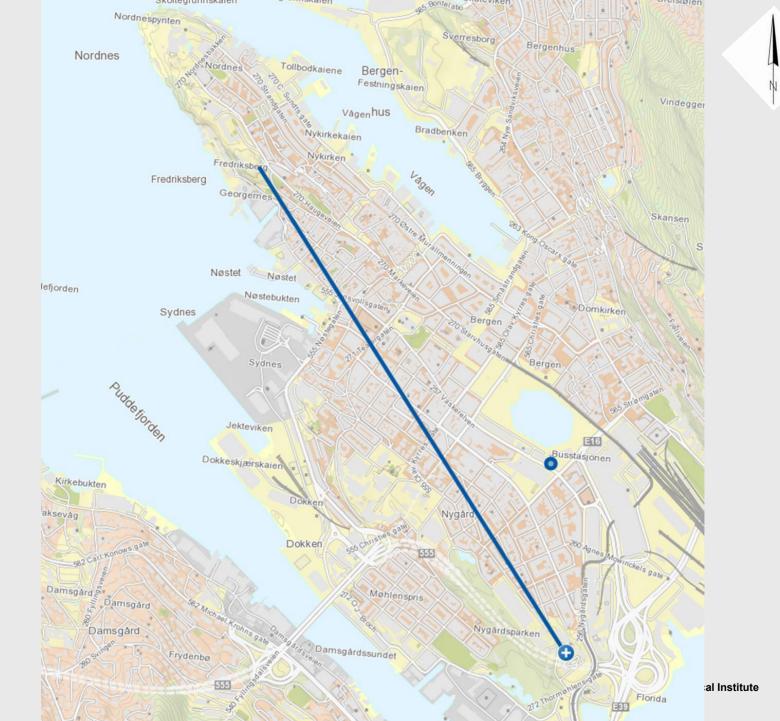

Norwegian Meteorological Institute

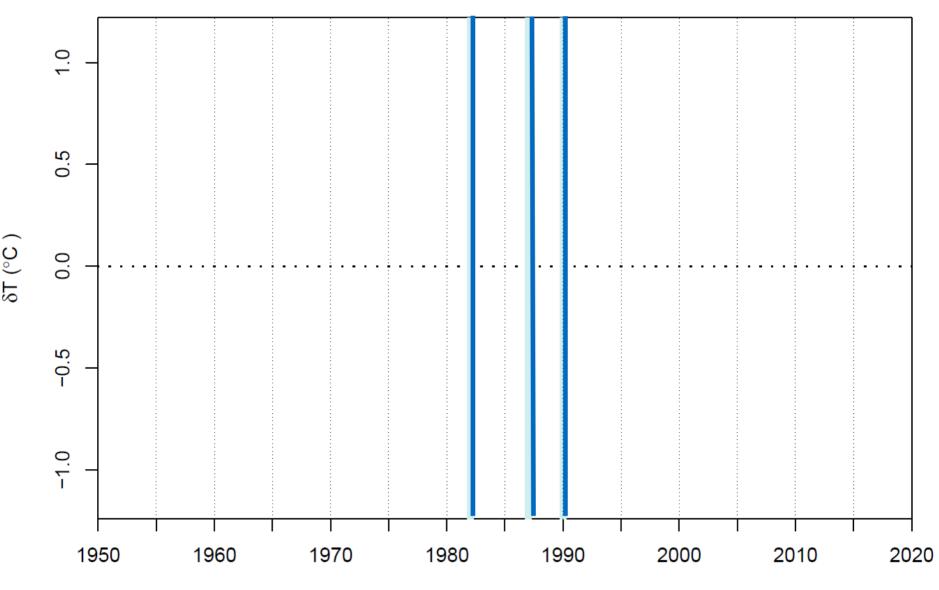
Results of the homogenization

Code for intepretation of breaks -Metadata


- A = Change from manuel to automatic station
- E = Environment
- H = Change of instrument height
- I = Inspection
- N = New instrument
- **O** = Shift of observer
- **R = Relocation**
- S = Change of screening
- ? = Not confirmed

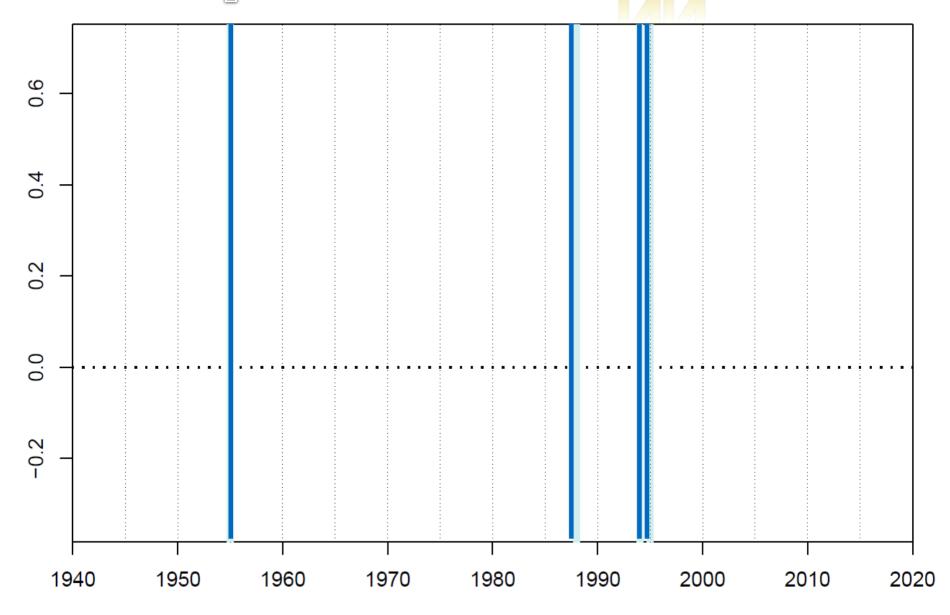
TRONDHEIM

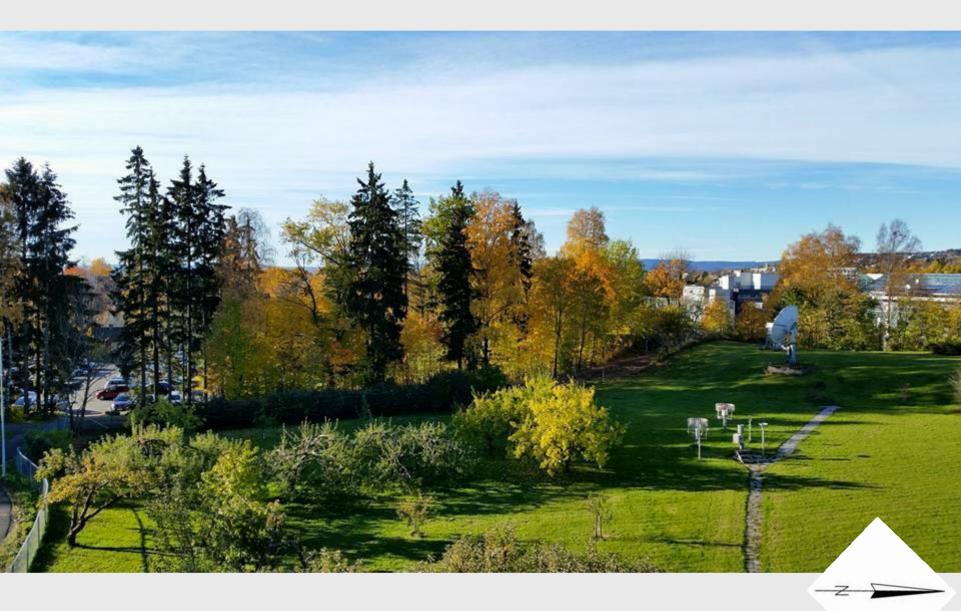




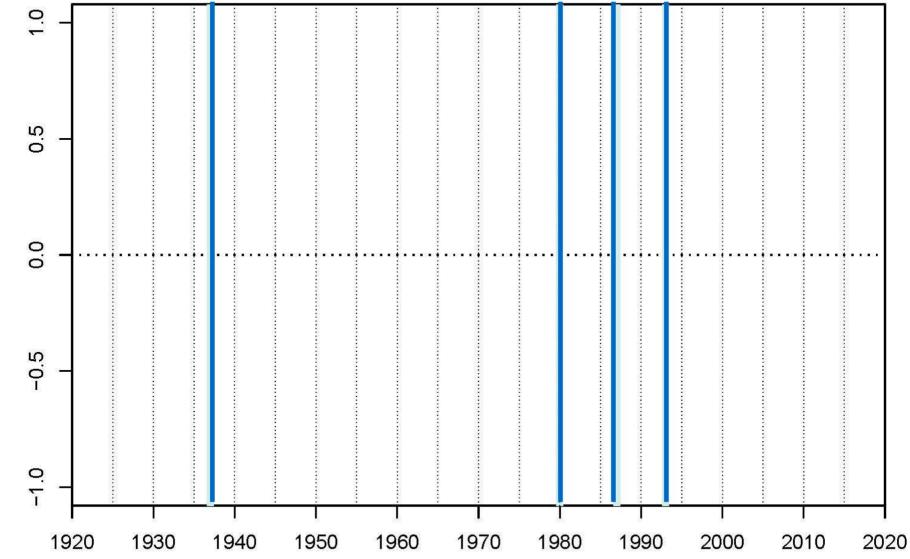
FLORIDA

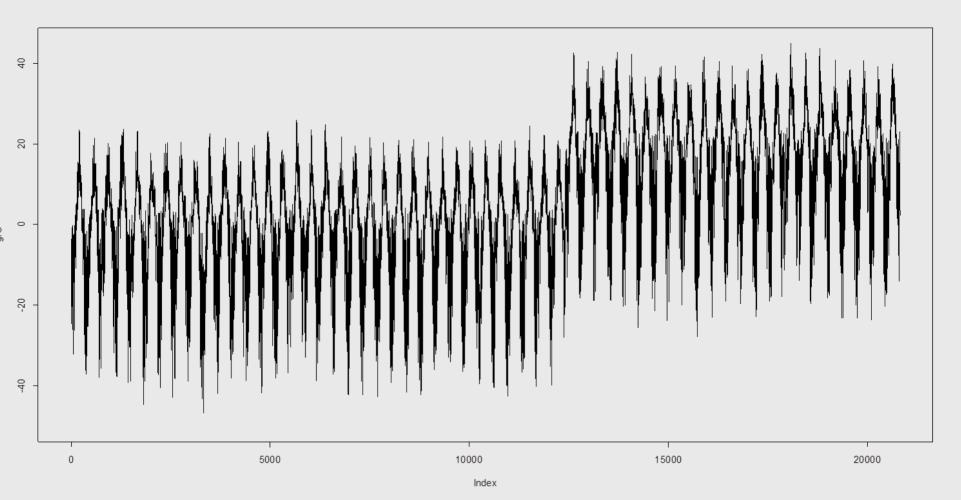
Norwegian Meteorological Institute





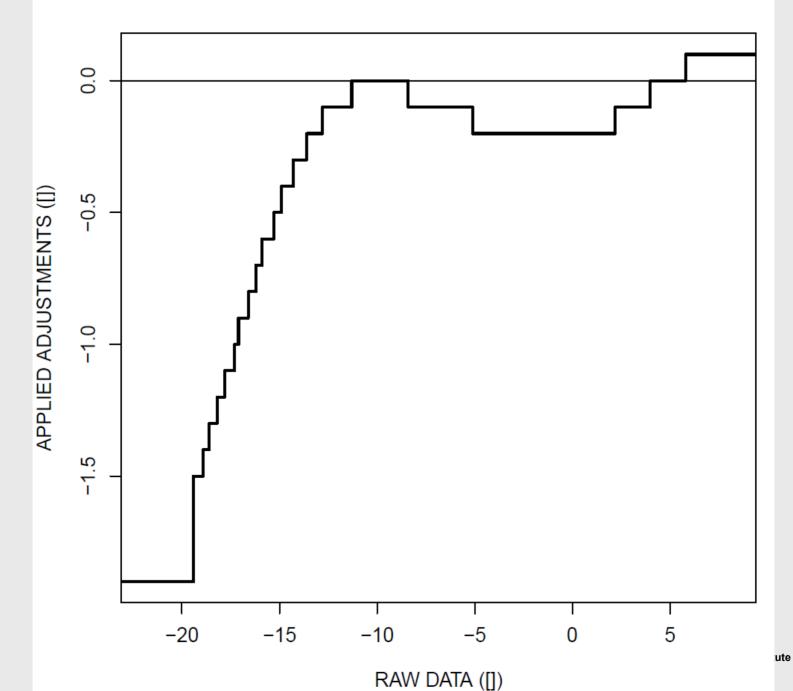
N



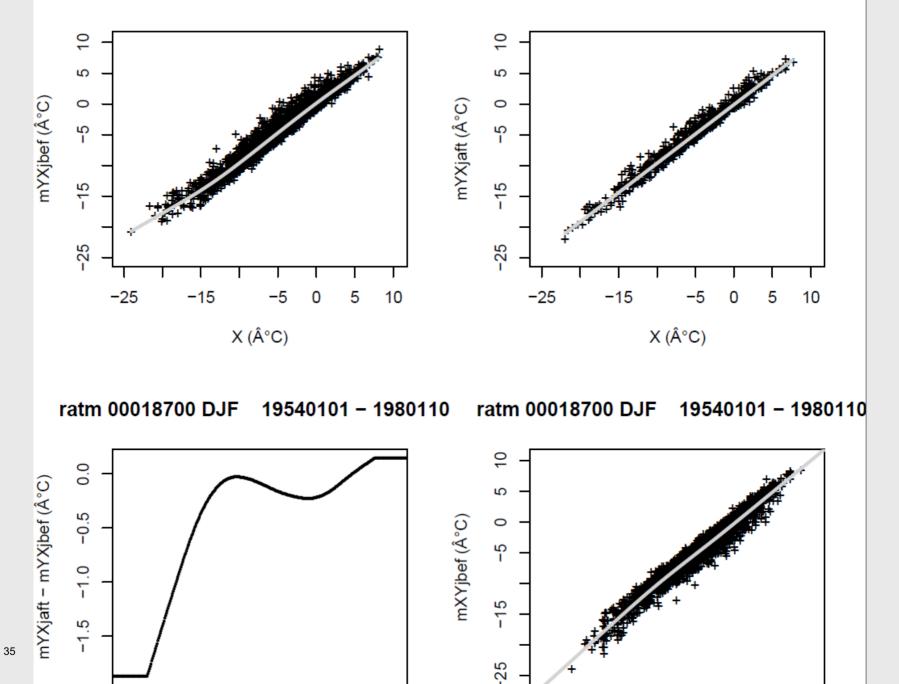


δT (°C)

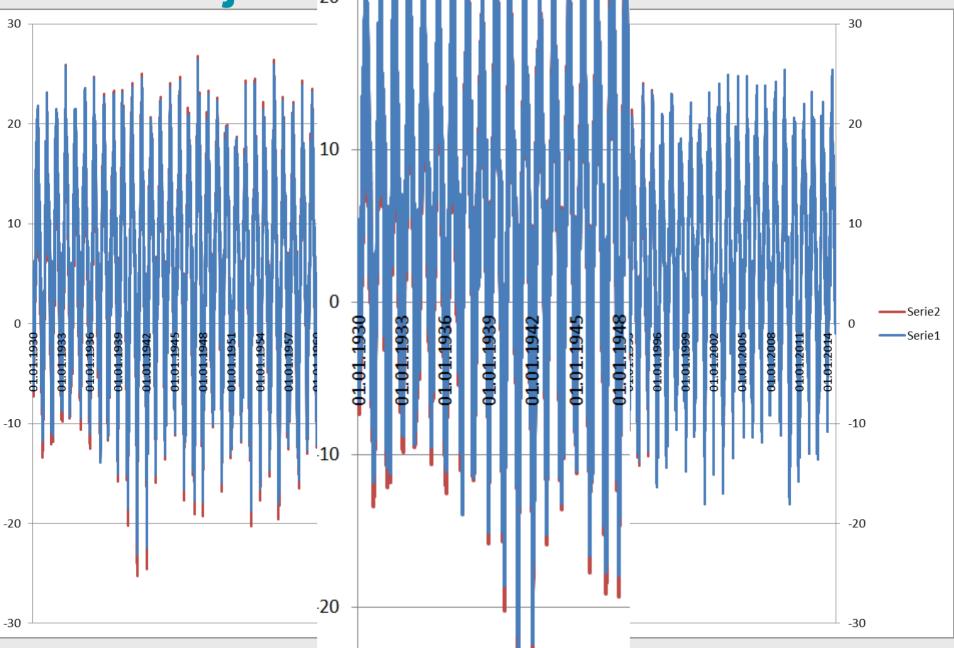
What happen in 1988?



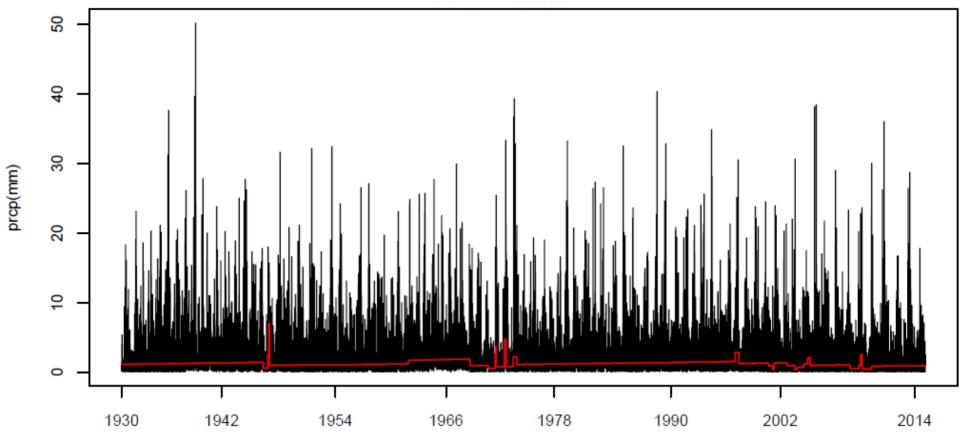
What happ



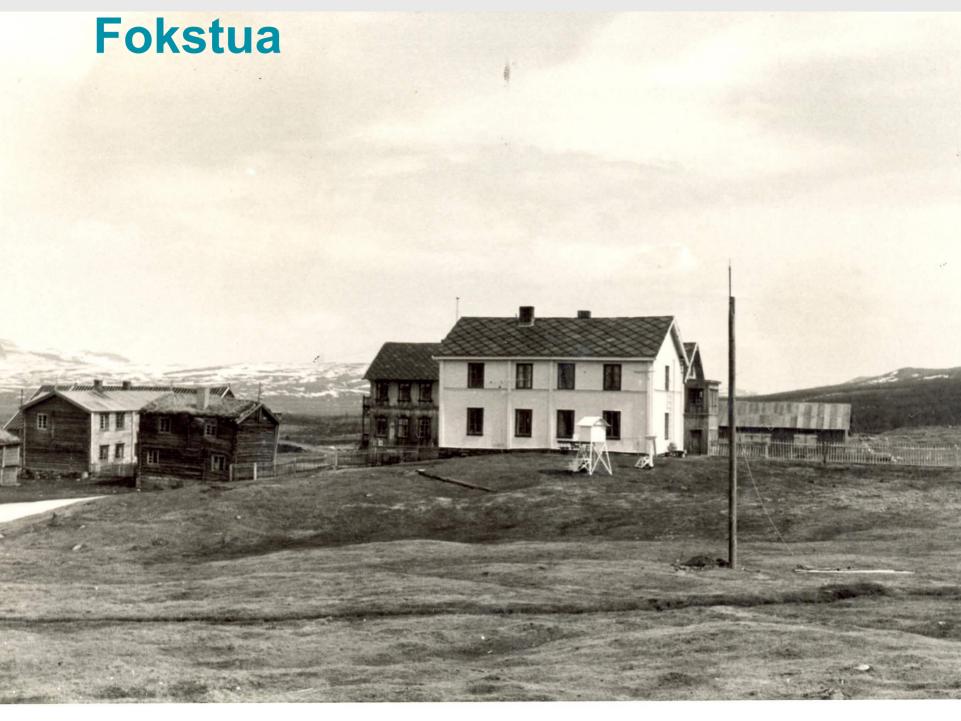
159


ratm cand: 00018700 ref: 00019400 DJF 19370201 - 19800229

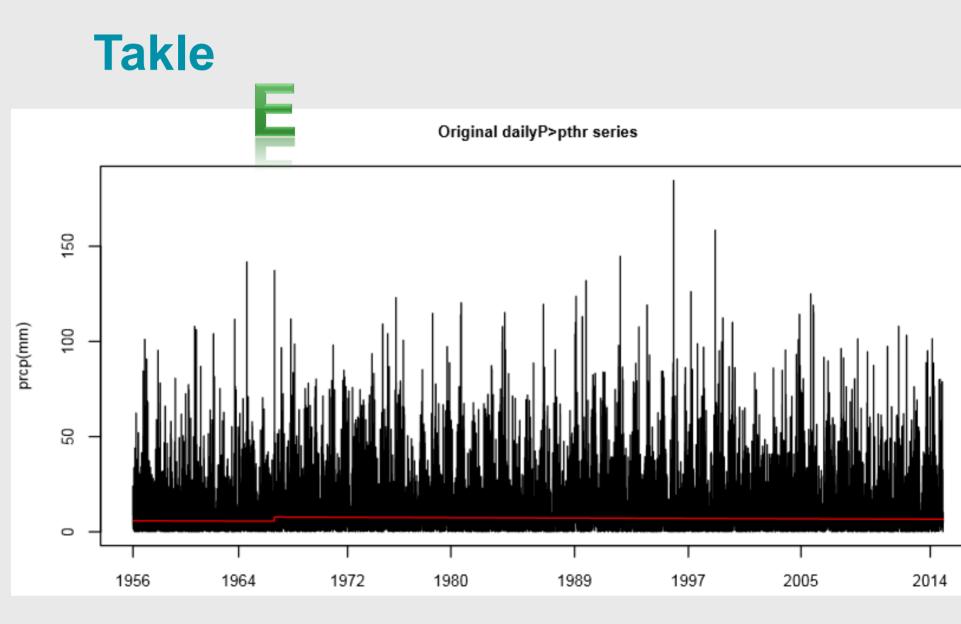
ratm 00018700 DJF 19540101 - 1980110 ratm 00018700 DJF 19801101 - 1987022



The adjust



Precipitation: RHtestsV4



Norwegian Meteorological Institute

Experiences so far..

- For temperature, we follow the recommendations of COST HOME:
- · Homer for monthly temperature
- · Software: SPLIDHOM for daily temperature
- Homogeneity Software precipitation is problematic: Seasonal challenges are not covered by "standard" applications. We use several Homer, MASH,
 One method of day P.T. (RHtests dlyPrcp4 @ Wang)

Have access to other methods (MASH, ACMANT, ...) for comparison (monthly data)

Open source can be a challenge:

· lack of standardization maintenance and repairs

Norwegian Meteorological Institute

Thanks for your attention!

T. +47 22 96 31 69

E. <u>elinl@met.no</u>

Twitter. @nile_2011

Norwegian Meteorological Institute

Homogenisation of Maximum and Minimum Air Temperatures in Ireland

Mary Curley* and Seamus Walsh

Homogenisation of monthly maximum and minimum temperature series

HOMER 2.6

Number of stations homogenised

• 17 years or more of data

Minimum: 99 stations

Maximum: 100 stations

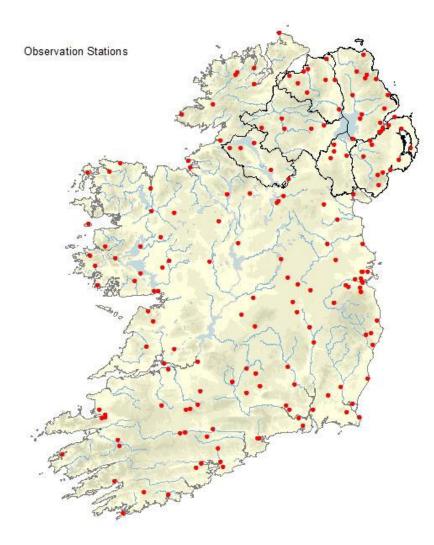
• Less than 17 years of data

Minimum: 35 stations

Maximum: 34 stations

Total number of stations homogenised
 Minimum and Maximum: 134 stations

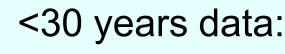
Number of stations homogenised


17 years or more of data

- Minimum temperature
- 99 stations (+48 N. Ireland reference stations)
- Maximum temperature
- 100 stations (+48 N. Ireland reference stations)

17 years or more of data

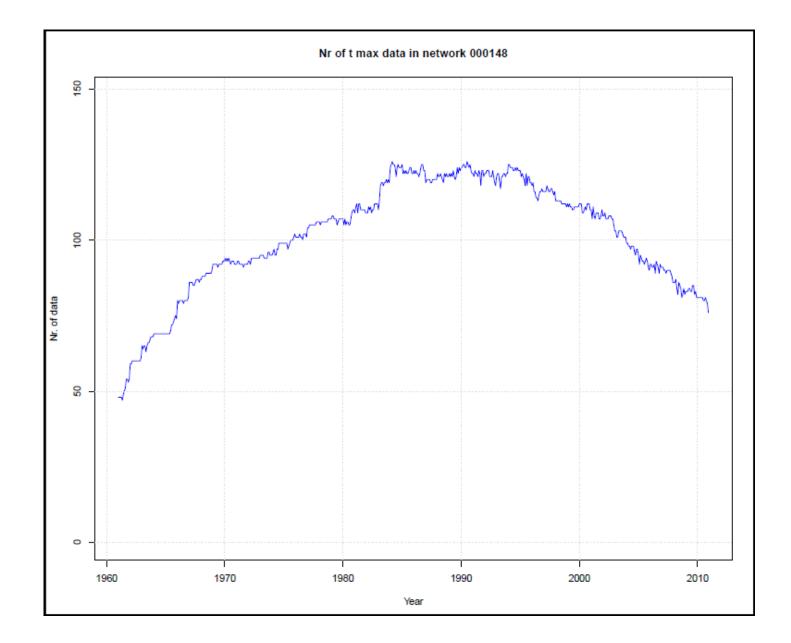
Irish stations with 17 years or more of data


50 years of data: 22 stations

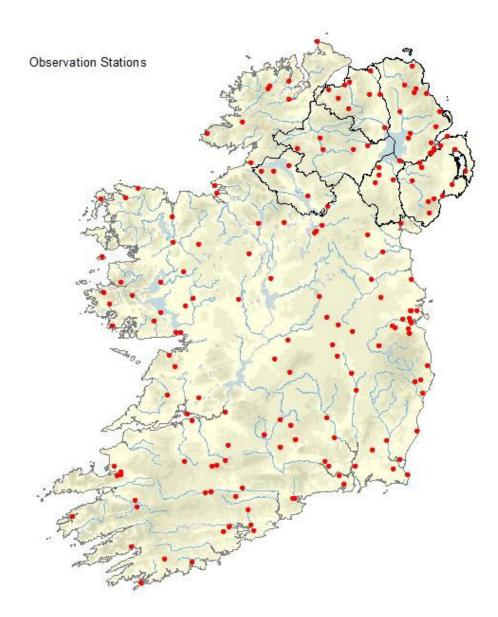
40-49 years of data:

19 stations

30-39 years of data:


19 stations

~40 stations



Number of Breaks

17 years or more of data

	Minimum	Maximum
Total number of		
breaks	108	111
% of stations with		
breaks	69	63
% verified breaks	37	37

Verified breaks

	Minimum	Maximum
New site %	35	41
Screen replaced %	25	17
New observer %	15	12
Degrees C thermometer %	5	5
New thermometer %	5	15
AWS %	5	-
Other %	10	10

Non-verified breaks

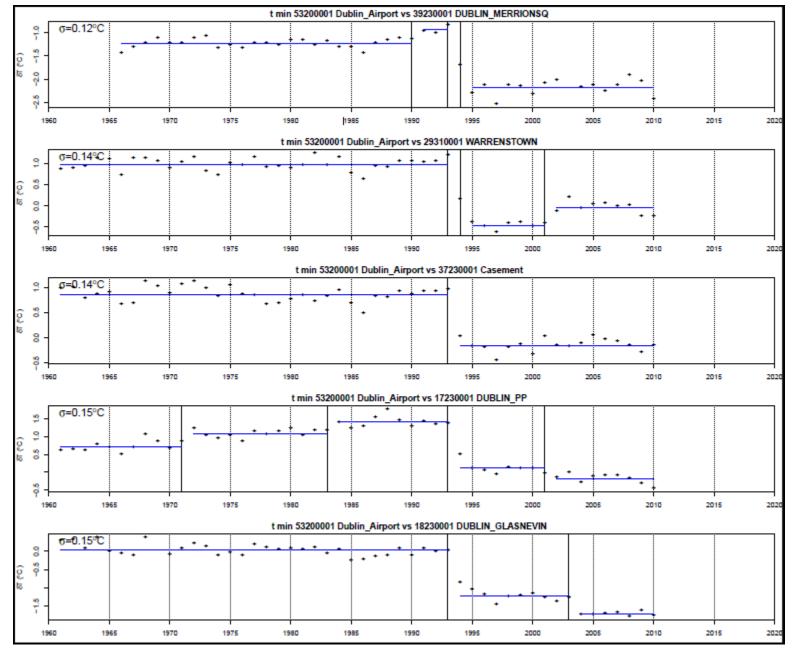
	Minimum	Maximum
No metadata %	28	30
No reason %	47	47
Possible reason/no exact		
date %	25	23

Example of some minimum monthly data detected breaks

	Year	month		Reason
TRALEE_CLASH	1982	5	v	degrees c thermometer
TRALEE CLASH	1993	12	v	new site
BALLINACURRA	1972	1	v	new obs
TUAM AIRGLOONEY	1963	1	n	no metadata
GLENAMOY	1984	2	V	site move
MILFORD_VOCSCH	1975	5	n	no metadata
KINSALEY AGRRES	1993	8	v	new screen
LETTERKENNY_MAGHERENAN	2005	5	n	no metadata
LETTERKENNY MAGHERENAN	1968	12	n	observer poor around this time
		3		
DUNGARVAN_CARRIGLEA	2005		V	screen replaced and new fence
DUNGARVAN_CARRIGLEA	1976	8	n	replacement screen sent
CLOOSH_FORSTN CLOOSH_FORSTN	2004 2007	9 7	n n	no reason no metadata

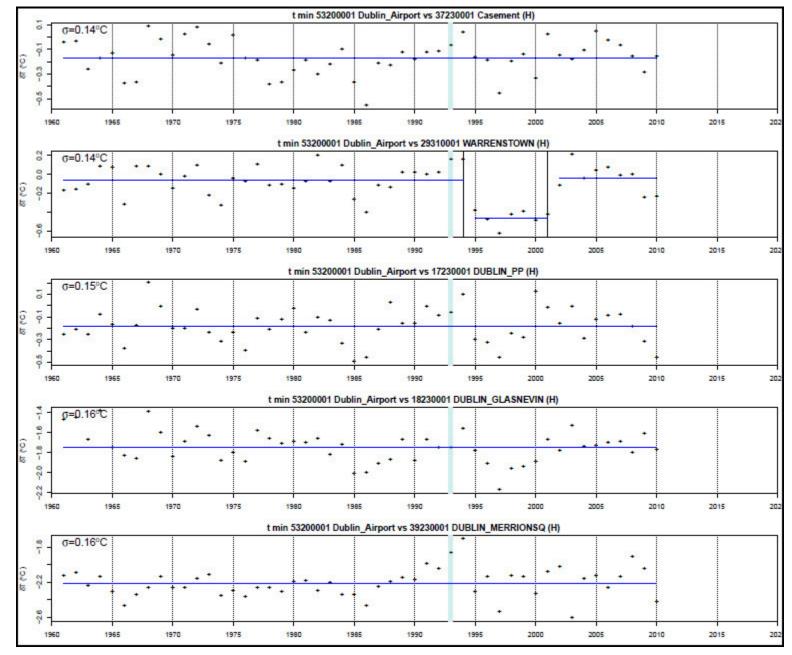
Number of breaks in stations

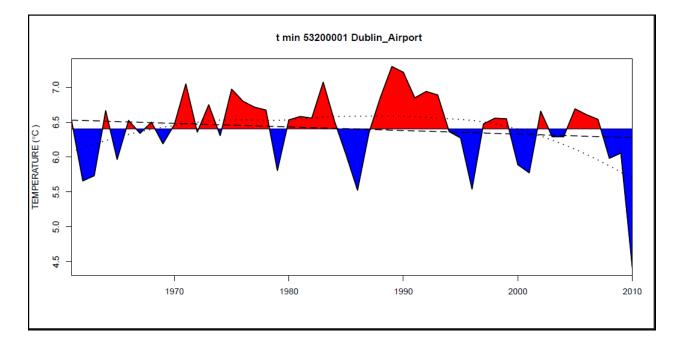
	Minimum	Maximum
# stations with breaks	68	63
# stations with 1 break	39	31
# stations with 2 breaks	19	23
# stations with 3 breaks	9	5
# stations with 4 breaks	1	2
# stations with 5 breaks	-	2

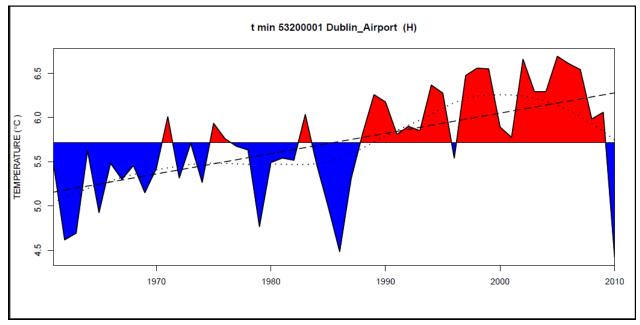


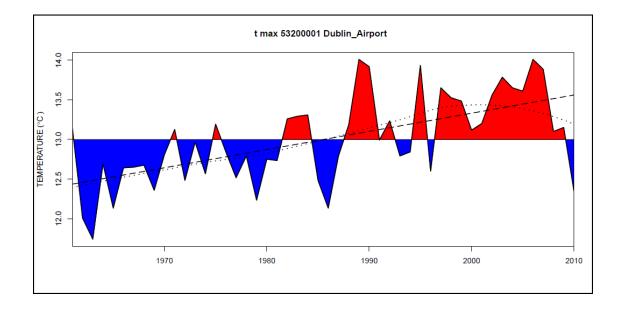
Dublin Airport

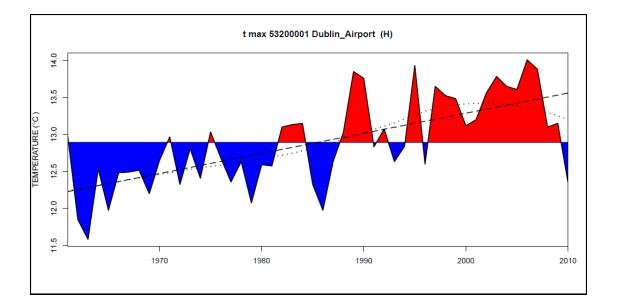
	Break amplitude	Annual correction	Monthly correction
Minimum	-1.03	-1.0	-0.9 to -1.3
Maximum	-0.28	-0.3	-0.1 to -0.4

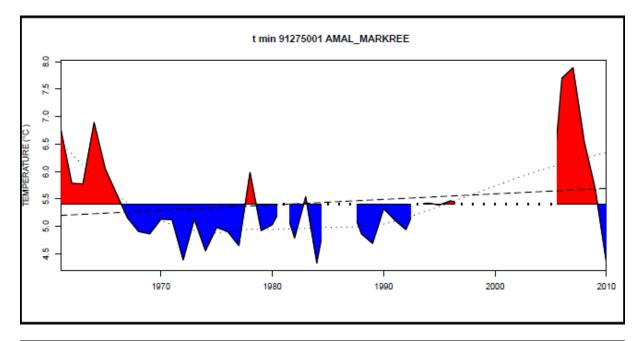


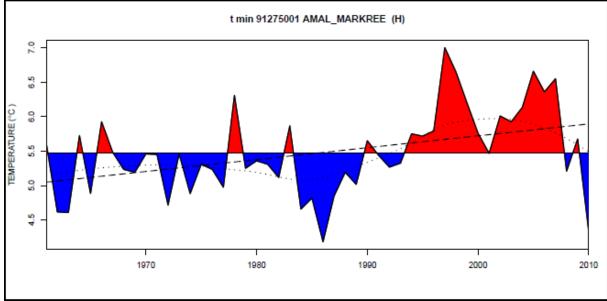

Data Management Workshop St Gallen October 2015








Markree Castle


reason for breaks unknown

	Year	Break amplitude	Annual correction	Monthly correction
Minimum	1961-1965	-1.52	-1.2	-0.7 to -1.8
	1966-1998	1.62	0.4	0.2 to 0.6
	1998-2008	-1.26	-1.3	-0.9 to -1.8
Maximum	1961-1965	-1.01	-1.7	-1.2 to -2.0
	1966-1984	-0.27	-0.6	-0.2 to -1.1
	1984-1995	-0.48	-0.4	0 to -0.9
	1995-2007	-1.42	-1.4	-1.3 to -1.6

Stations with little metadata but multiple breaks

- Oak Park
 - Min: 3 breaks 1967, 1997 & 2006
 - Max: 5 breaks 1967, 1977, 1991, 1997 & 2006

- Derrygreenagh
 - Min: 3 breaks 1973, 1982 & 2007
 - Max: 4 breaks 1964, 1974, 1990 & 2002

HOMER 2.6

Outliers which were extreme events were reinserted after homogenisation

 In general interactive mode was used. A lot more breaks when non-interactive mode used

Comparison with MASH

• Some stations compared well for others there was a big difference

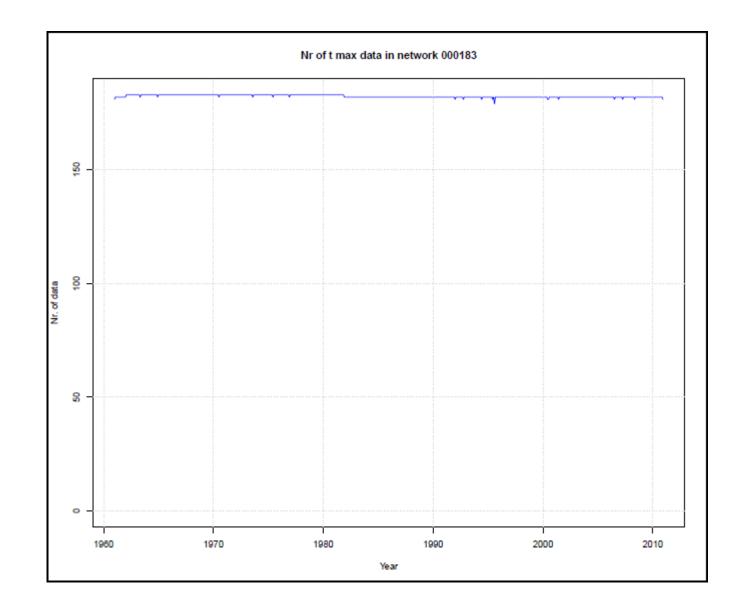
HOMER v MASH

		Jan	Feb.	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Min T													
Dublin													
Airport		0.2	-0.2	-0.3	-0.2	0	0.7	-0.3	0	0.2	0	-0.1	0
Max T													
Dublin Airport		-0.1	0.2	0	-0.1	0	0	0	-0.3	-0.1	0.1	0.1	-0.1
·													
Min T													
Markree	1961	-1.1	0.1	-1.7	-1.1	-1.3	-1.7	-1.1	-1	-0.5	-1.6	-1.1	-0.7
	1983	-0.5	0.1	-0.8	-0.2	-0.5	-0.6	-0.5	-0.5	0.5	-0.5	-0.4	-0.8
	2002	-0.7	0.2	-1.4	-1.1	-0.8	-1.4	-0.9	-0.7	-0.4	-1.1	-0.6	-0.3

Stations with less than 17 years of data

Minimum temperature
 35 stations

Maximum temperature
34 stations


Less than 17 years of data

Infilled the series which had less than 17 years of data prior to homogenisation

 Used the homogenised data series from stations with 17 years or more of data as reference

Number of Breaks

Less than 17 years of data

	Minimum	Maximum
Total number of		
breaks	47	46
% of stations with		
breaks	80	82
% verified breaks	34	37

Number of breaks in stations

	Minimum	Maximum
# stations with breaks	28	28
# stations with 1 break	13	24
# stations with 2 breaks	11	8
# stations with 3 breaks	4	2

Daily data

Daily data series

• Looking at parallel data series

SPLIDHOM

Parallel data series

- When stations where automated we had parallel measurements for a number of months.
- Mullingar
- Valentia
- Belmullet
- Malin Head
- Sherkin Island

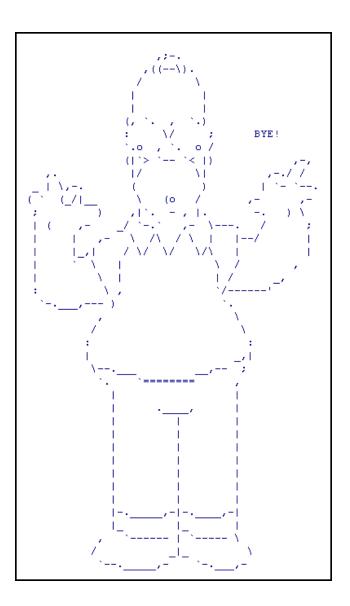
Parallel data series

- In general the difference seems bigger between minimum temperatures however for Sherkin Island the maximum temperature is more affected.
- The difference in the maximum thermometers can range from 0.5 up to 3 degrees C whilst for the minimum it is generally less than a degree.

SPLIDHOM

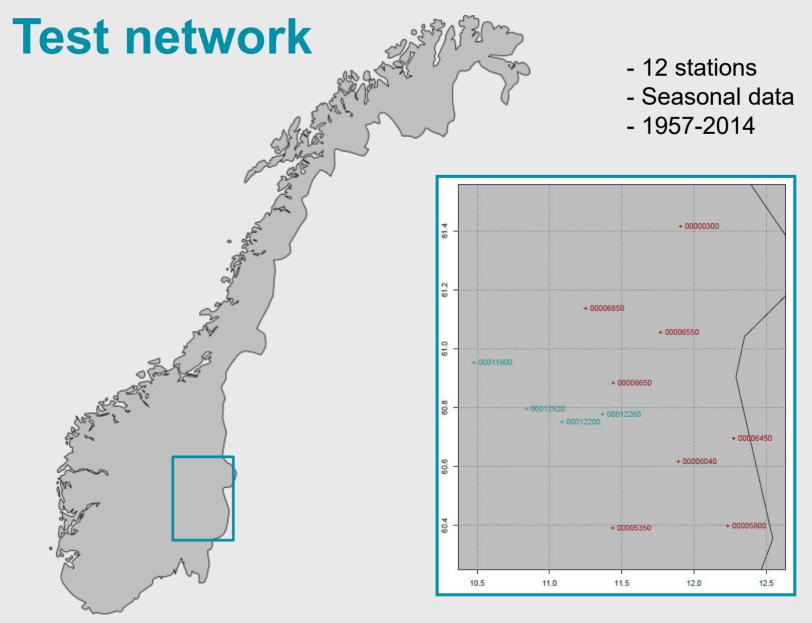
Starting with Dublin stations

- long series with generally not too many breaks in monthly data
- dense network



Thanks to the Met Office, particularly Dan Hollis for providing Northern Ireland monthly maximum and minimum data

Thank you



Influence of outliers in homogeneity testing of seasonal precipitation data in Norway

Herdis M. Gjelten, Ole Einar Tveito and Elin Lundstad 29.10.2015

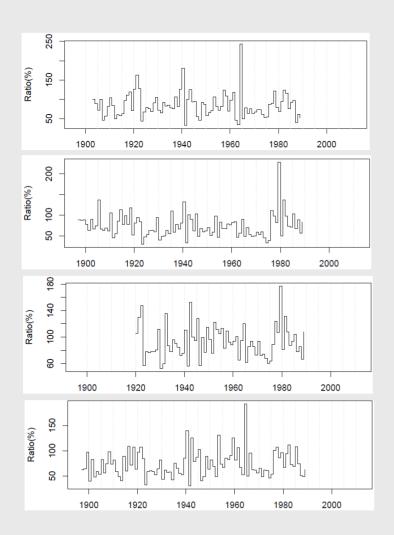
Typical test result

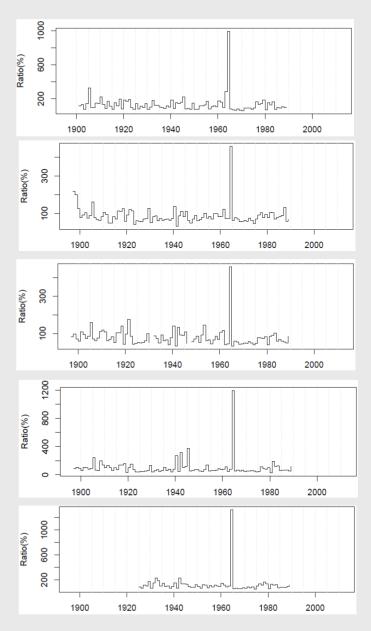
Break year	Adjustment factor
1961	1.08
1963	0.94
1964	1.08
1974	0.91
1979	1.08
1980	0.94
1981	1.04

Norwegian Meteorological Institute

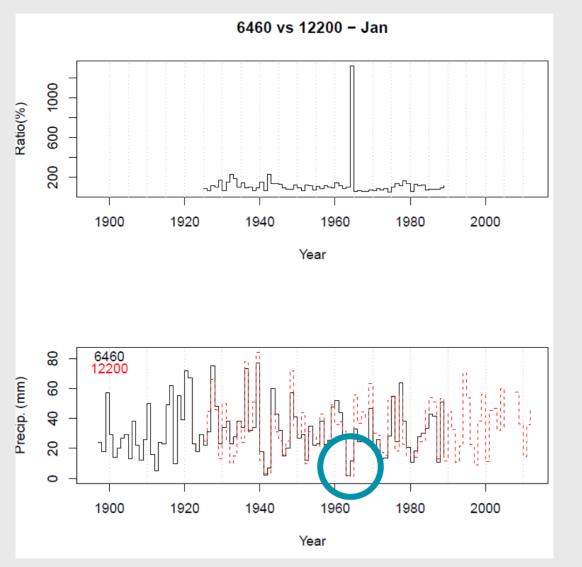
Removal of outliers

Station	Daily value	Percentile	New value
300	2.5	53	
5350	3.2	54	
5800	30.7	99	
6040	9.0	87	
6460	32.1 mm	99 %	2.0 mm
6550	2.3	41	
6650	1.3	29	
6850	0.3	13	
11900	2.4	47	
12200	11.4	93	
12260	0.7	22	
12520	2.9	61	
Average		54.5 %	

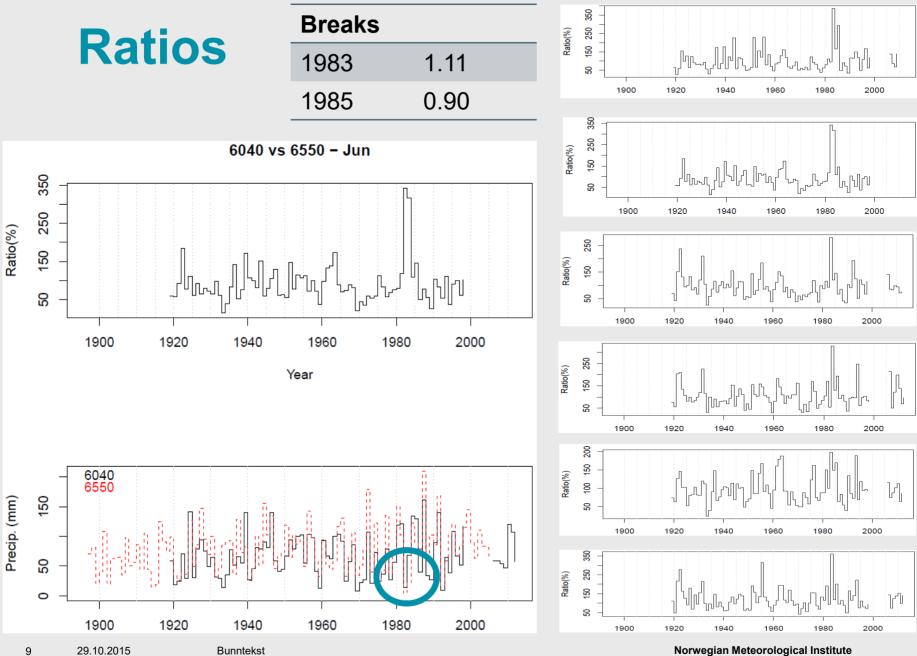

Removal of outliers - result


	Number of breaks		
	Before	After	
MASH	26	21	
HOMER	34	33	

Typical test result - again


Break year	Adjustment factor
1961	1.08
1963	0.94
1964	1.08
1974	0.91
1979	1.08
1980	0.94
1981	1.04

Ratios



Ratios

Monthly sum January: 6460 = 11.9 mm 12200 = 0.9 mm

 \rightarrow large ratio

29.10.2015 9

Norwegian Meteorological Institute

Conclusions?

Norwegian Meteorological Institute

Thank you for your attention!

Adjustment of new daily data from thermograph and pluviograph to a conventional series: the case of Fabra Observatory, Barcelona (1904-1913)

10th EUMETNET Data Management Workshop – 28/30 October 2015, St. Gallen

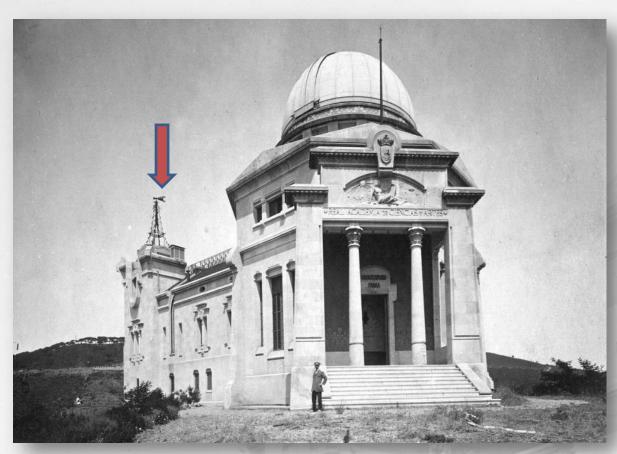
Marc Prohom, Enric Aguilar and Germán Solé

Servei Meteorològic de Catalunya

Layout

Adjustment of new daily data from thermograph and pluviograph to a conventional series: the case of Fabra Observatory, Barcelona (1904-1913) 10th EUMETNET Data Management Workshop – 28/30 October 2015, St. Gallen

- 1. Background and objectives
- 2. Digitalization process
- 3. Reference series and quality control
- 4. Homogeneity analysis Break point detection (HOMER)
- 5. Homogeneity analysis Daily adjustment on temperature (SPLIDHOM)
- 6. Homogeneity analysis Monthly adjustment on precipitation (HOMER)
- 7. Results and conclusions

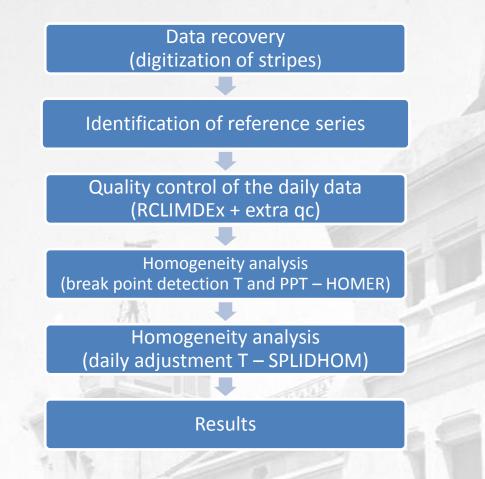

Fabra Observatory (in Barcelona, 412 m asl) has one of the longest, continuous and unchanged location series of Iberia.

Meteorological field at Fabra Observatory: 1920s (left image) – present day (right image)

For years it was believed that meteorological observations began in August 1913. In 2012, evidence of previous observations appeared and the data and metadata was detected and recovered from the archives of the Royal Academy of Sciences and Arts of Barcelona.

- New data covered the period from 1905(Dec) up to 1914(June).
- Was recorded by weekly thermographs and pluviographs.
- The site was located at the roof of the observatory.

Location of the undocumented observatory

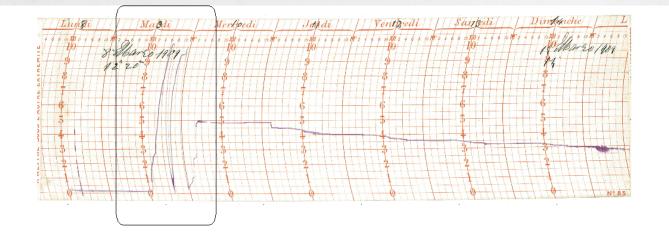


Weekly thermograph and tipping-bucked rain gauge, both Richard manufacturers

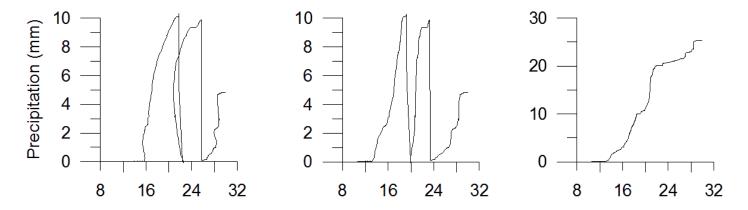
15/12/1904 up to 30/06/1914 97.9% data recovered for T and 100% for precipitation (hourly and daily)

MAIN OBJECTIVE: adjust the daily T data (Tx and Tn) and the monthly PPT data to the conventional series.

<u>ACHIVEMENT</u>: the longest and more continuous series of Catalonia, located in a single point.

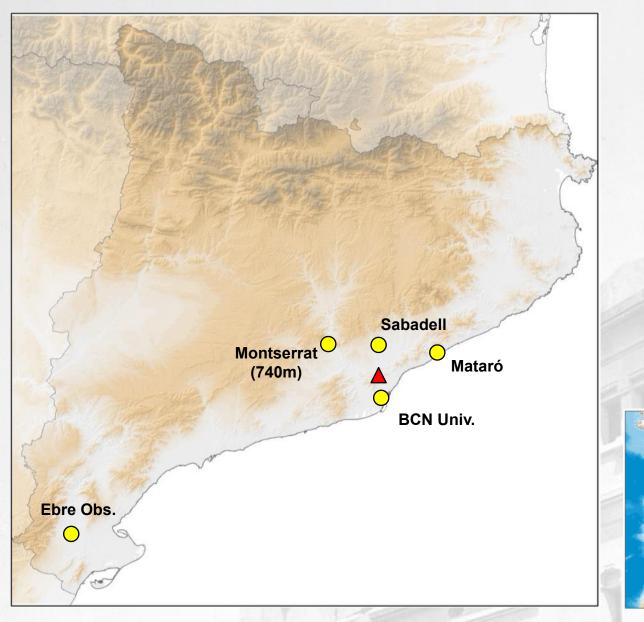


2. Digitalization process

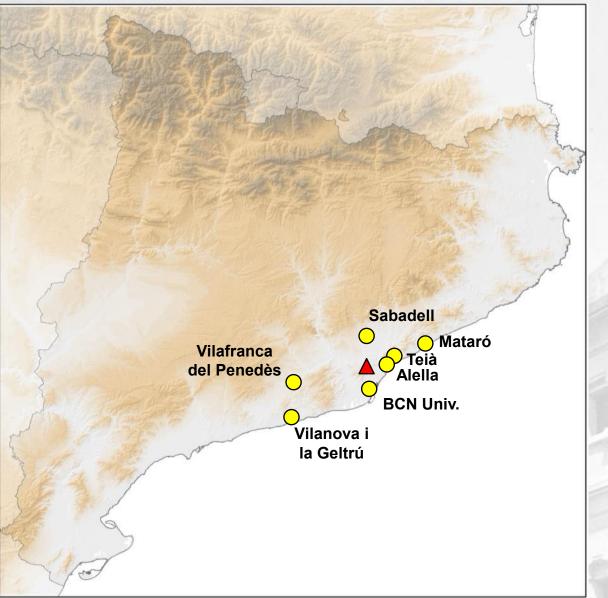

Several steps:

- a) Scanning of the thermograph and pluviograph stripes.
- b) To obtain the digitized values (time, variable) according to WINDIG methodology.
- c) Applying algorithms for the required corrections:
 - T: correction due to time marks curvature and determination of hourly and daily Tmax and Tmin.
 - **PPT**: determination of 0 level at the beginning of the record, Determination of the time and values of the maxima and minima due to the discharge process, evaluating the precipitation during this interval, and creating a new increasing time-precipitation series.
- d) Quality control: coherency controls.
- e) Main difficulties: determination of time and likely malfunctions, especially for rain gauge data.

2. Digitization process



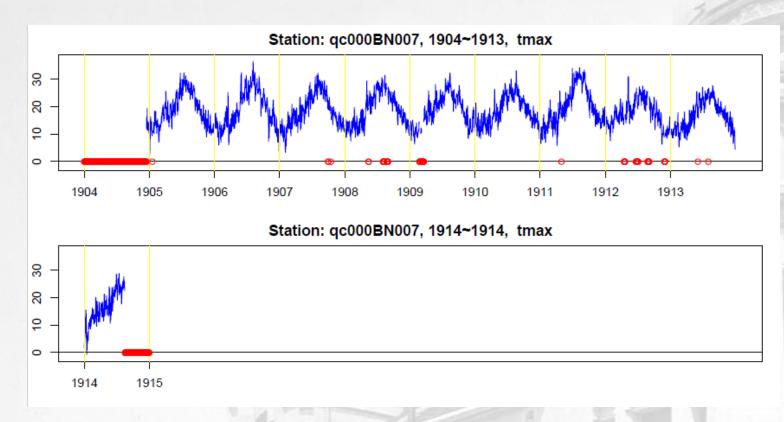
Before time-mark curvature correction After time-mark curvature correction Increasing time-precipitation series


Hours (0 is 00:00 09/03/1909)

2. Reference series (T)

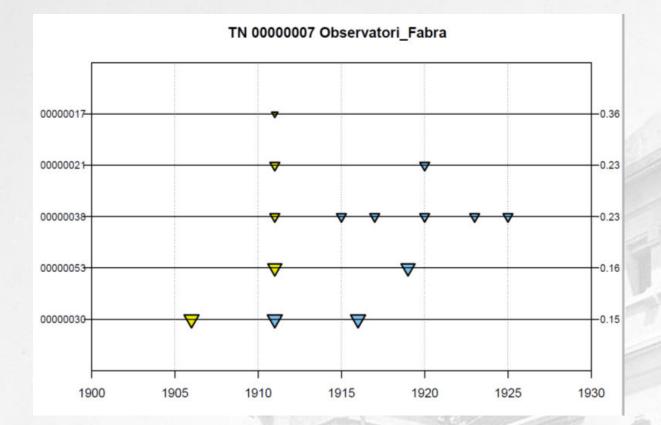
5 daily Tx and Tn series were detected with >80% of data (1904-1930)

2. Reference series (PPT)


7 monthly PPT series were detected with >80% of data (1904-1930)

3. Quality control

RCLIMDEX (+extraqc) was applied to daily TN and TX candidate (Fabra) and reference series.

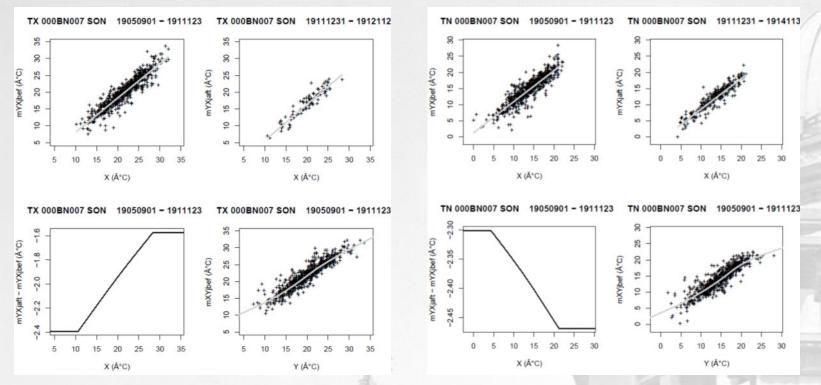

- 13 daily TN and 14 daily TX anomalous values were detected
- No anomalous data were detected for PPT

4. Break point detection (HOMER)

HOMER approach (COST ES0601) was used for break-point detection: the whole set of series were used.

A clear BP was detected in **1911/12** at the end of "thermograph" period.

5. Adjustment of daily TX and TN (SPLIDHOM)

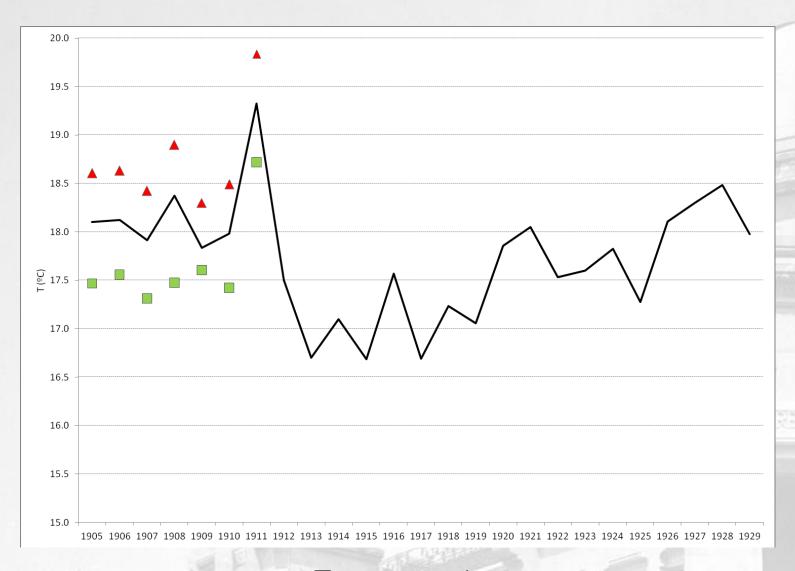

SPLIDHOM was used to adjust the daily series, taking into account 1913 BP.

The most well correlated series from the set were:

	DJF Bef/Aft	MAM Bef/Aft	JJA Bef/Aft	SON Bef/Aft
Mataró	0.85/0.80	0.86/0.80	0.82/0.79	0.92/0.94
Sabadell	0.85/0.85	0.77/0.79	0.84/0.79	0.92/0.92
ТХ				
				11 10.00
	DJF Bef/Aft	MAM Bef/Aft	JJA Bef/Aft	SON Bef/Aft
Mataró				

ΤN

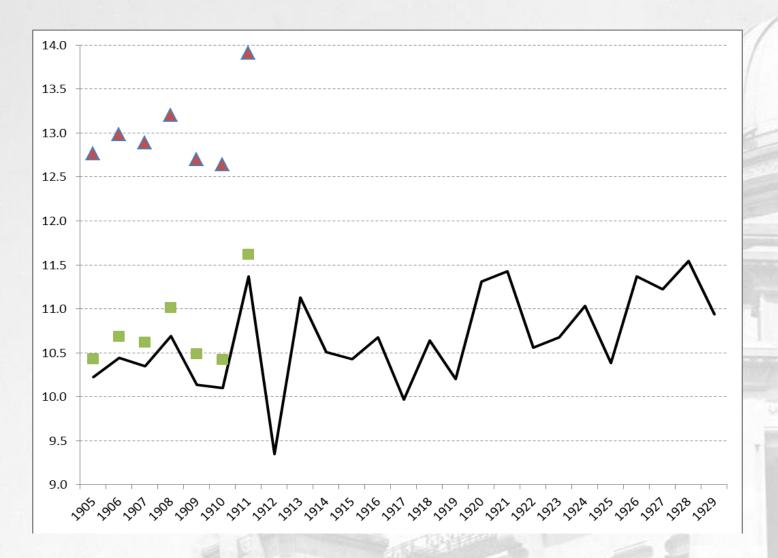
6. Adjustment of daily TX and TN (SPLIDHOM)


Correction of HSP between 01/09/1905 and 19/11/1911, for Fabra Observatory daily TX (left panel) and TN (right panel) for the autumn season (SON), and using Mataró (X) as reference.

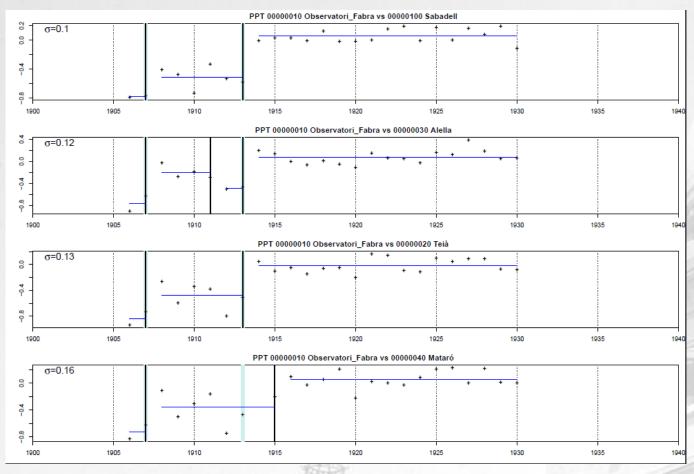
Corrections are always negative and quite large, for both TX and TN, confirming the warming effect of the roof (summer) and wind damping effect (TN, in winter).

Summer: -2.1/-2.4°C (TX) Winter: -0.9/-0.6°C (TX) -2.7/-3.7°C (TN) -1.5/-3.5°C (TN)

10th EUMETNET Data Management Workshop - 28/30 October 2015, St. Gallen

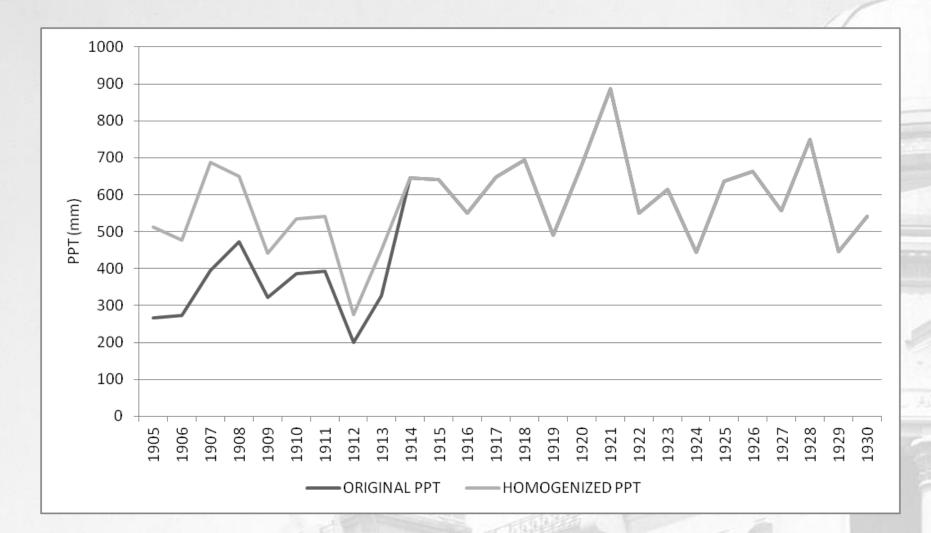

6. Adjustment comparison: SPLIDHOM vs. HOMER (TX)

Annual averages of daily corrected TX series () compared to raw () and monthly homogenized series by HOMER (solid line).


10th EUMETNET Data Management Workshop – 28/30 October 2015, St. Gallen

6. Adjustment comparison: SPLIDHOM vs. HOMER (TN)

Annual averages of daily corrected TN series() compared to raw () and monthly homogenized series by HOMER (solid line).


6. Adjustment of monthly PPT (HOMER)

Two breakpoints were detected: 1907 (unknown) and 1913.

A clear underestimation of rainfall totals was detected, probably due to exposition and/or instrumental problems.

6. Adjustment of monthly PPT (HOMER)

10th EUMETNET Data Management Workshop – 28/30 October 2015, St. Gallen

7. Some conclusions...

- Early daily and sub-daily undocumented data from Fabra Observatory (Barcelona) has been digitized and recovered.
- HOMER succeeds in detecting the "new" period recovered.
- Adjustment results differ if we apply a daily (SPLIDHOM) or monthly (HOMER) approach... why?
 - HOMER works with 5 stations while SPLIDHOM just 1
 - The correlation is not good enough (around 0.8) for daily adjustments in some seasons.
- **Data rescue activities:** completing existing series and digitizing unknown ones = improves break-point detection and adjustment.
- To be done: contrasting SPLIDHOM findings with other methods as percentile-matching (PM) algorithm (Trewin, 2012).
- Breaking news!

7. Some conclusions...

1		terasa							ealle	1999						
Fecha	bora	Marc	Min.	Seco.	Hun.	Evap.	Pens.	Marc	Min.	Plus.	Clase	Cantiol.	Observaciones			
1º Dbre	8	13,4	8.8	8.7	8.5	1.5	129	12.7	9.0	11.7	N.B.	10	Ty Ø			
2 n	8	9.6	5.0	9.4	81	1.0	41.3	9.0	5.3	44.7	Sten	6				
3	8	11,2	4,9	8, 3	7,7	1,8	+	10 8	4, 8	des.	Ci	4	a19.20 0			
4 11	8	12.8	4.5	8.5	5,5	3.0	_	11.1	7.1		SÆ	3	1930 V			
5	8	8.6	3.9	4,7	-0.3	3.5		8.2	3.9	13-11	St	2				
6 "	R	8,2	1.3	2.6	20	8.1	-	7.1	1.2	-	st en	4				
17 u	8	62	1.2	2.3	-07	3.9	-	5.6	0,6	- F emission	Alt en.	3	LI III			
8 n	8	44	2,5	3,3	2,2	4,2		7.0	2,0		St an	5				
9 "	8	4,7	2.4	3,4	2.0	3,3		7.3	2:5	-	C	3	u la			
· 10 4	8	8.0	26	3.5	2,4	3,0	4	7.7	2.5	-	St.	8	4 SE a 1968 cm			
J II .,	8	8.2	3,4	6.0	2.6	5.0		76	3.3	_	35	¥				
1 12 a	8	8,1	5.2	7.6	6.2	7.8		8.0	5.2		st	10				
13 .	8	11.2	7,0	7.5	3,2	5.0		11.3	7.0		st en	7				
14 .	8	8,3	3.0	·u,7	1.5	6,3	71	8.1	29	-	Ci	3	223AT4			
15 .	8	9,2	2,4	4,4	2,0	5.5	2.7	93	2.6	4:0	st	2				
16.	8	810	2.1.	10	.1,5	5,2	1 PK	7.6	2.1	-	ei	4	13.6 0			

Parallel measurements were taken in the roof and the garden, from July 1913 up to October 1920.

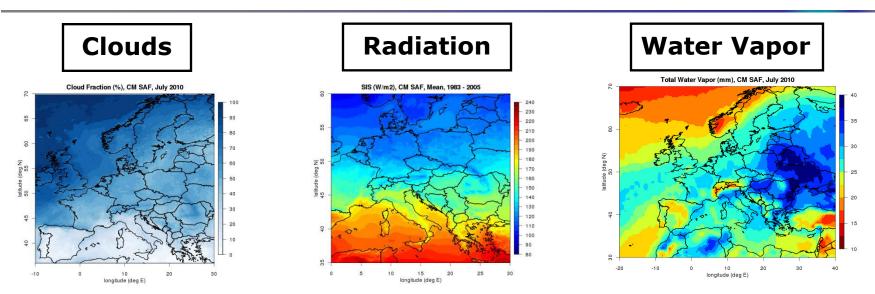
THANKS FOR YOUR ATTENTION !

10th EUMETNET Data Management Workshop – 28/30 October 2015, St. Gallen

Climate Data Records of ECVs from the CM SAF

Current Status and application examples

Martin Werscheck, Rainer Hollmann, Jörg Trentmann, Frank Kaspar

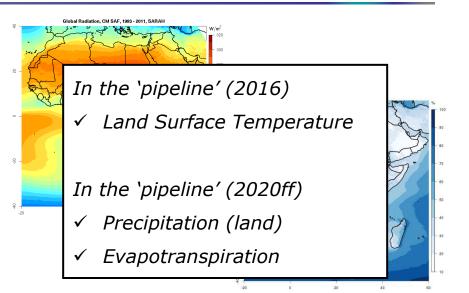


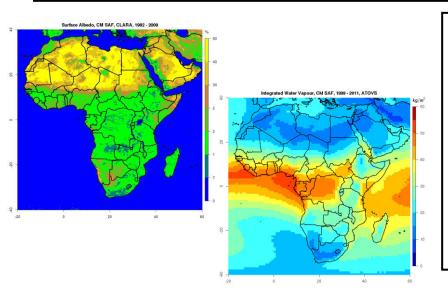
Overview:

- Short introduction to CMSAF products
- Using CMSAF products to evaluate quality of ground based radiation measurements
- Analysing requirements of in-situ networks for Germany (surface radiation, sunshine duration).

- EUMETSAT Satellite Application Facility on Climate Monitoring <u>www.cmsaf.eu</u>
- Provides satellite-derived climate data of geophysical variables
- Regional, up to global coverage
- Currently, data available from Jan 1982 to October 2015
- Spatial resolution: 0.03° to 1°

- Data freely available in netcdf-format
- User-friendly data access via the Web User Interface: <u>www.cmsaf.eu/wui</u>
- Toolkit (example data + software):
 www.cmsaf.eu/tools
- CM SAF Community Site available via EUMETSAT: <u>training.eumetsat.int</u>





CM SAF data

- Cloud Information
- ✓ Surface and ToA Radiation
- ✓ Surface Albedo
- ✓ Water Vapour
- Precipitation, wind, surface
 fluxes (ocean only)
- ✓ Free Tropospheric Humidity

Satellites used to generate CM SAF

data sets and operational products:

- Meteosat (SARAH / CLAAS)
- > AVHRR (CLARA)
- > ATOVS / SSMI (HOAPS, FCDRs

(=radiances))

Data Access

CM SAF data is freely available without restrictions!

www.cmsaf.eu/wui

- Registration required
- Data will be delievered in 1 hr to 1 day to an ftp server in hdf / netcdf format

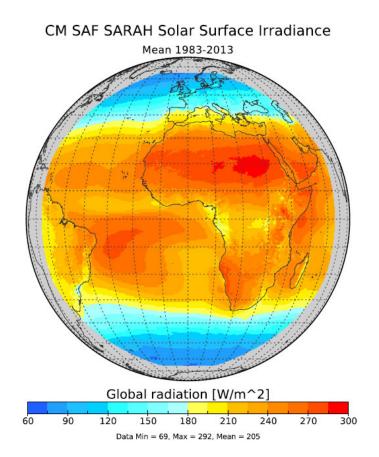
CM SAF Workshops

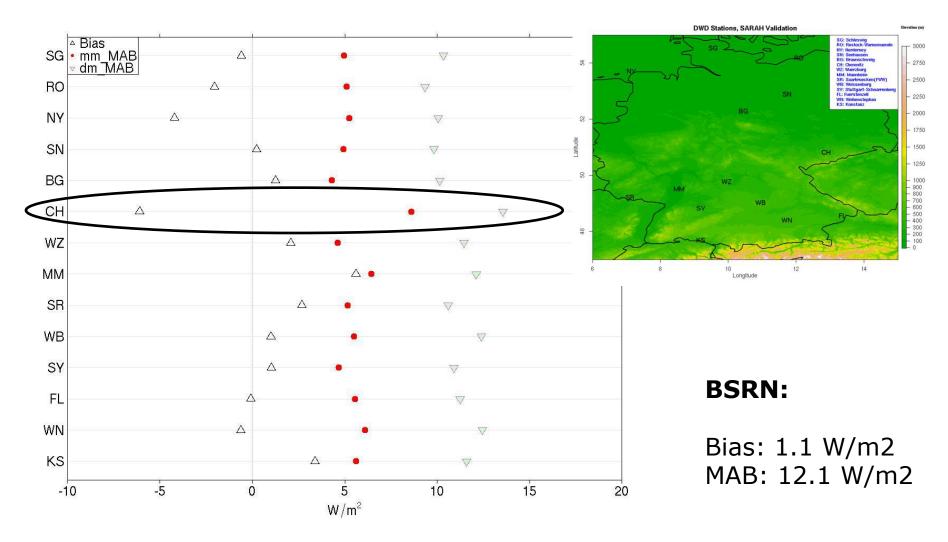
CM SAF conducts annual

workshops / online events to

support the use of CM SAF data

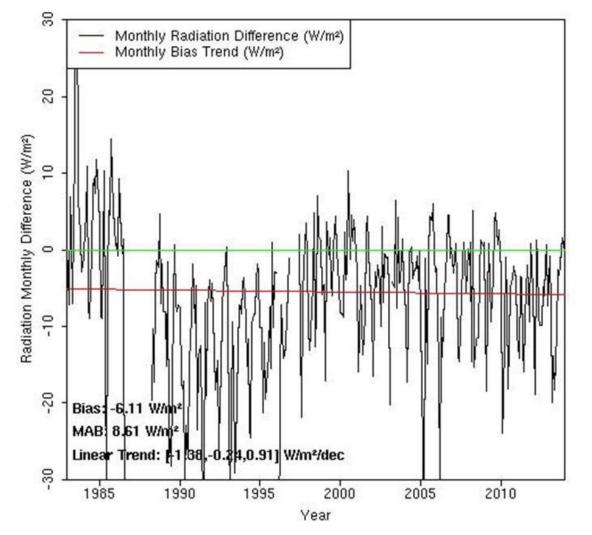
Applications of satellite-based data sets from the CM SAF in numerical modeling, 14 to 17 November 2016, ECMWF, Reading, UK


ADVANTAGES

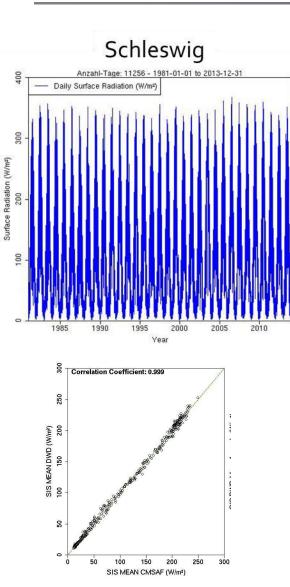

Surface Solar Radiation Dataset – Heliosat (SARAH)

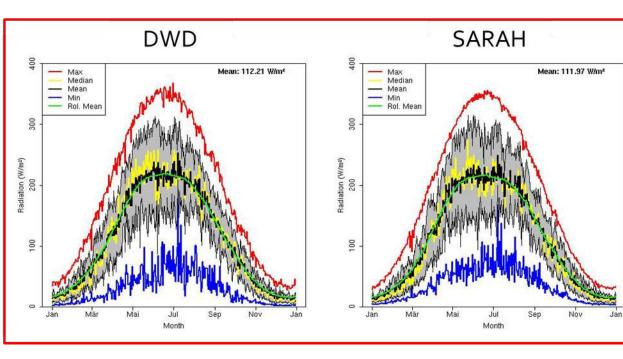
- Variables
 - Global irradiance (SIS)
 - Direct normalized irradiance (DNI)
 - Effective cloud albedo (CAL)
- Resolution
 - Spatial: 0.05° × 0.05°
 - Temporal: hourly, daily, monthly means
- Coverage
 - Spatial: Meteosat disk
 - Temporal: 1983 to 2013
- Satellites
 - Meteosat 2 to 10 (MVIRI/SEVIRI)
- Freely available at www.cmsaf.eu

Validation of SARAH daily mean irradiance with DWD network

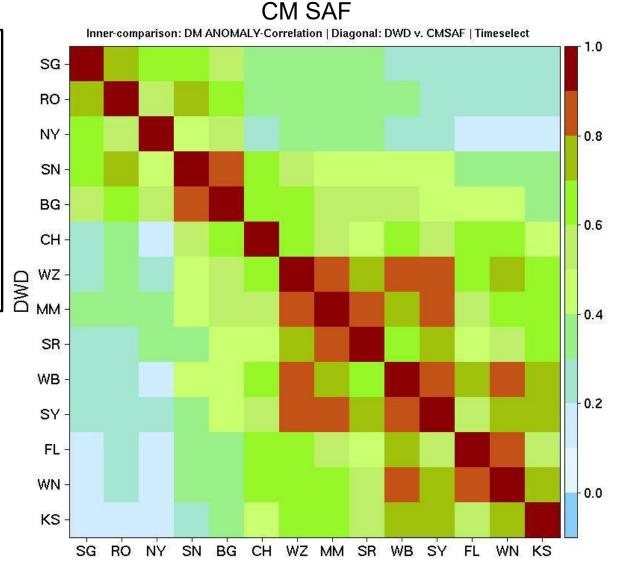


Time series of differences between SARAH SIS and station measurement

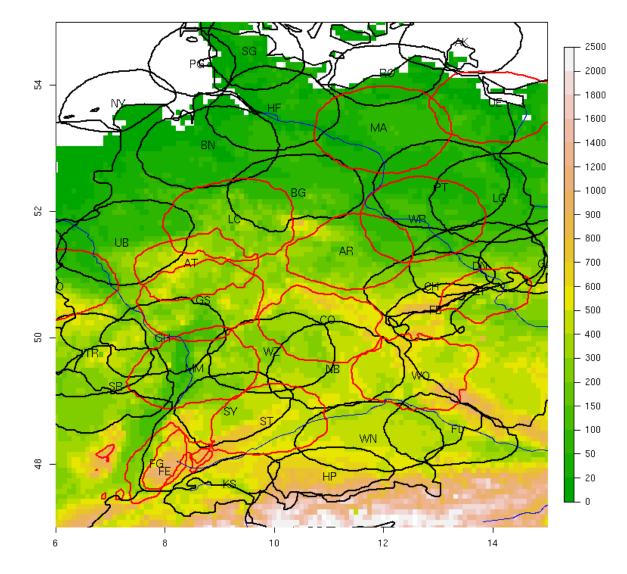



Obvioues jumps in 1989 and 1997 / 98

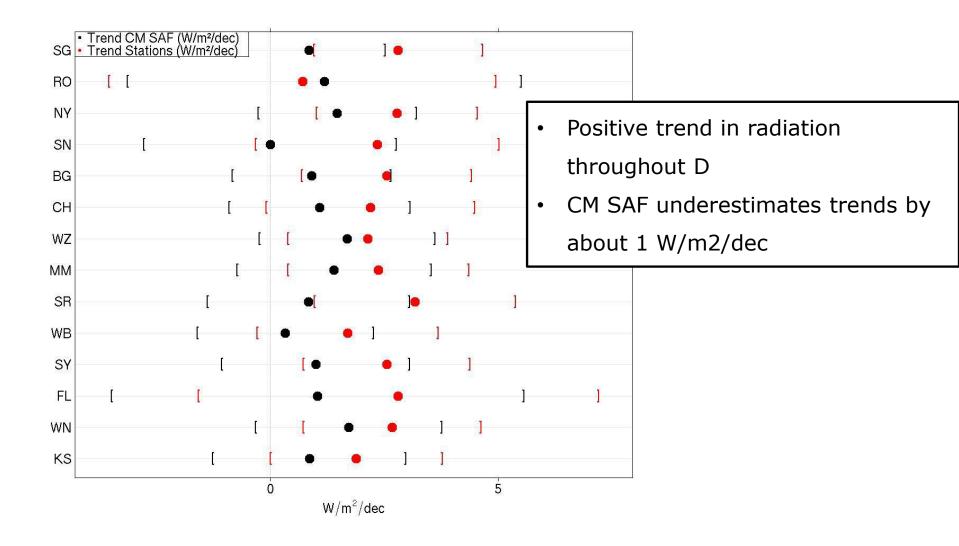
Inhomogenities in station data?



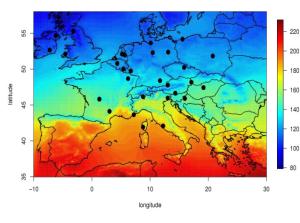
- Multi-year daily averages
- Very high correlation

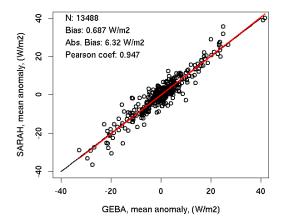


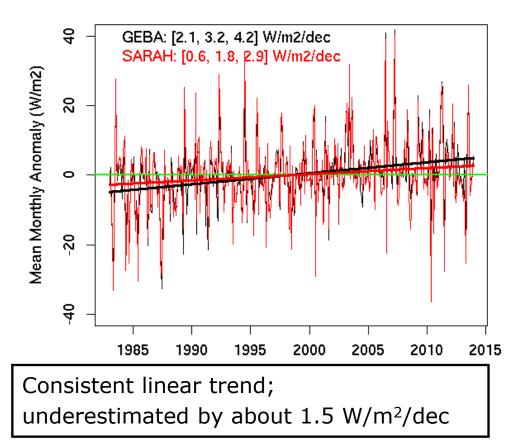
- CM SAF data provide good representation of the spatial structure of daily variability
- Correlation decreases with distance of stations.


The suggested new
DWD observation
network for surface
radiation covers
almoste completely
Germany with a
correlation of >0.9
(based on SARAH)

•



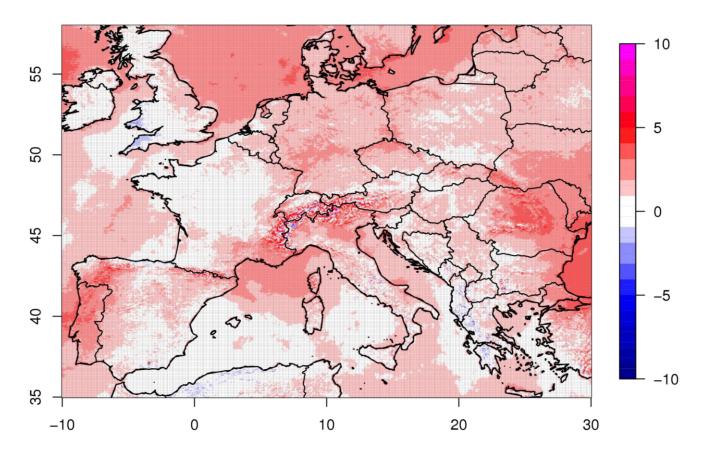



Trend assessment, evaluation with GEBA

SARAH Mean Irradiance [W m-2] and GEBA stations

Surface Radiation Anomaly, GEBA / SARAH

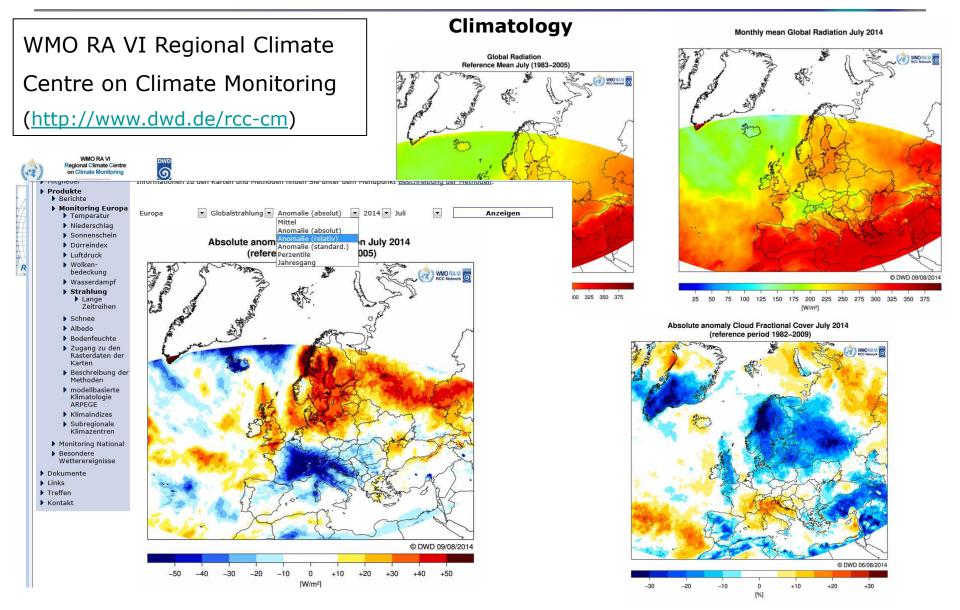
GEBA data provided by Arturo Sanchez-Lorenzo, IPE-CSIC, Zaragoza


Surface Radiation Anomaly, GEBA / SARAH

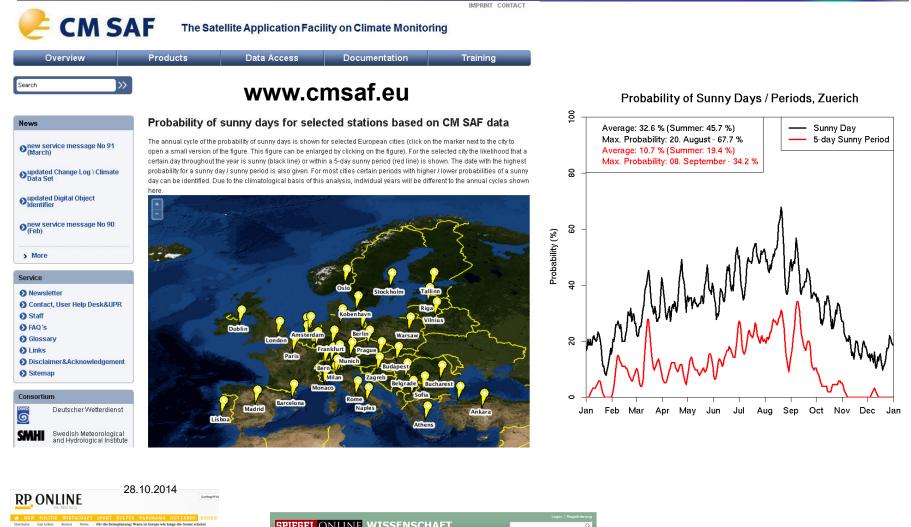
Spatial Trends

Trend in SIS [W m-2/dec], 1983 - 2013

- Mainly positive trends
- Substantial spatial variability



Application: WMO RCC, KU23



Sunny days in Europe

Für die Reiseplanung

Wann in Europa wie lange die Sonne scheint

SPIEGEL ONLINE WISSENSCHAFT												L	ogin	Registri	erung Q
Politik Wirt	tschaft	Panorama	Sport	Kultur	Netzwelt	Wissenschaft	Gesundheit	einestages	Karriere	Uni	Reise	Auto	Stil		
Nachrichten > Wissenschaft > Natur > Wetter > Wetter: Wann und wo in Europa die Sonne scheint									21	.10	20	14			

Langzeitanalyse: Wo und wann in Europa länger die Sonne scheint

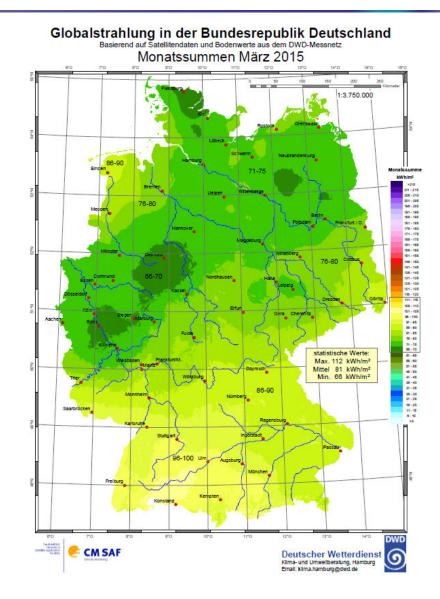
October 2015

DWD Solar Radiation Product for Germany:

www.dwd.de/solarenergie

Climate Monitorina

- Combined product using the CM ٠ SAF SIS operational product and surface measurements
- Generated on a monthly basis ٠



Available online at www.sciencedirect.com SciVerse ScienceDirect Solar Energy 86 (2012) 3561-3574

Solar resource assessment in the Benelux by merging Meteosat-derived climate data and ground measurements

Michel Journée^{a,*}, Richard Müller^b, Cédric Bertrand^a

Application: Sunshine Duration

Adv. Sci. Res., 10, 15-19, 2013 www.adv-sci-res.net/10/15/2013

doi:10.5194/ast-10-15-2013 @ Author(s) 2013. CC Attribution 3.0 License

Remote Sensing

www.mdpi.com/journal/remotesensing

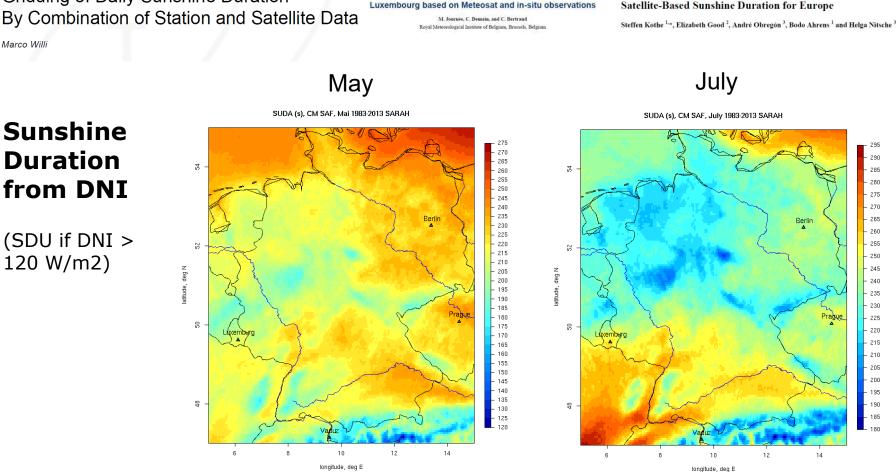
ISSN 2072-4292

Remote Sens. 2013, 5, 2943-2972; doi:10.3390/rs5062943

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz

Arbeitsbericht MeteoSchweiz Nr. 232

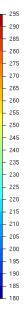

Sunshine

Duration

120 W/m2)

Gridding of Daily Sunshine Duration By Combination of Station and Satellite Data

Marco Willi



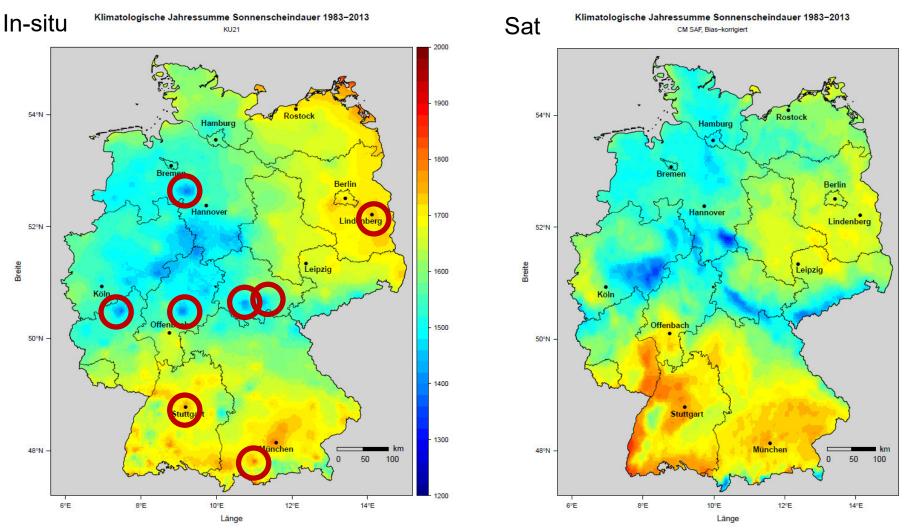
Sunshine duration climate maps of Belgium and

Advances in

Science & Research

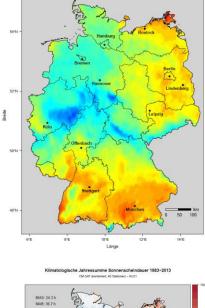
Article

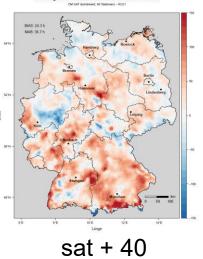
Pradue

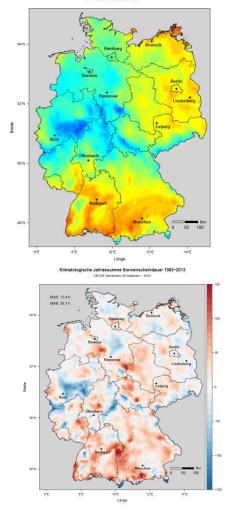

14

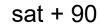
Sunshine duration: in-situ vs. satellite

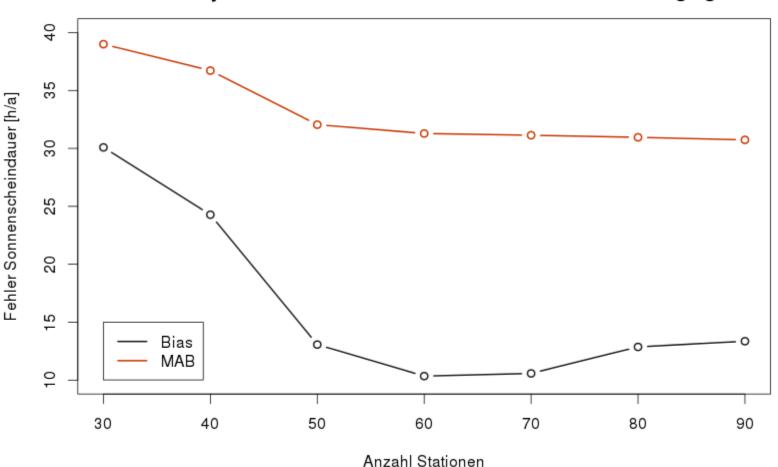

Which product provides best representation of the real conditions?




in-situ vs. satellite




Klimatologische Jahressumme Sonnenscheindauer 1983–2013 CM SAF, kombiniert, 40 Stationen



In situ only

Mittlerer jährlicher Fehler vs. Anzahl von Stationen fürs Merging

Error in sunshine duration vs. number of stations used for merging

Summary:

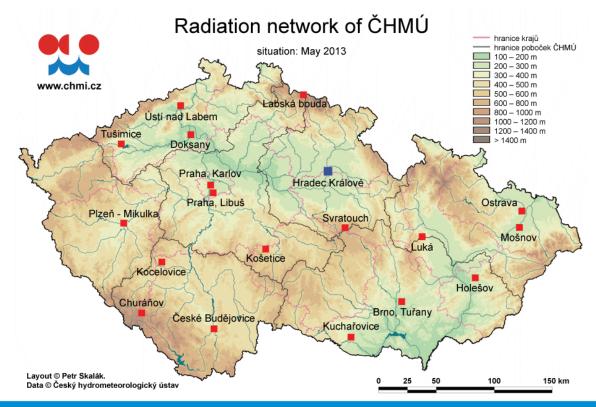
- CMSAF provides satellite-based datasets of several parameters
- These datasets can be used to evaluate quality and homogenity of in-situ observations
- DWD has analysed requirements for the in-situ network based on CMSAF radiation data.

Global solar radiation: comparison of satellite and ground based observations

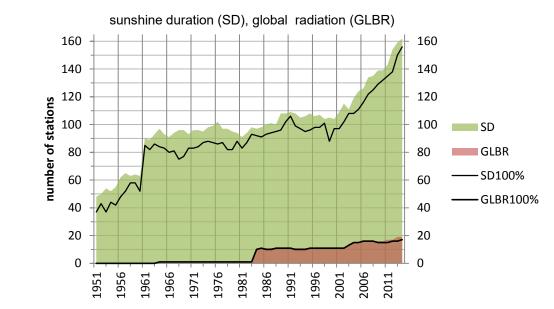
Petr Skalak^{1,2}, Piotr Struzik³, Aleš Farda^{2,1}, Pavel Zahradníček^{2,1}, Petr Štěpánek^{2,1}

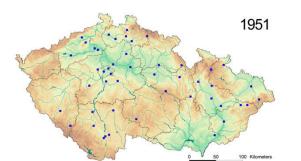
Czech Hydrometeorological Institute, Praha, Czech Republic
 Global Change Research Centre AS CR, Brno, Czech Republic
 Institute of Meteorology and Water Management, Krakow, Poland

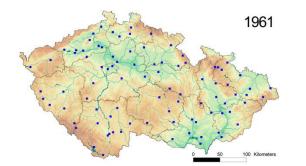
skalak@chmi.cz

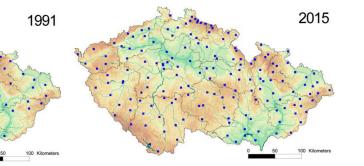

Na Šabatce 2050/17, 143 06 Praha 412-Komořany

CHMI Radiation Network


- 19 stations in total
- established in 1984 with 11 stations (the oldest records since 1953)
- monitoring of solar radiation (global radiation + components, UV radiation)
- equipped with Kipp&Zonen CM11 and CMP 11 pyranometers
 - Q: How can we get information on solar radiation at other locations?



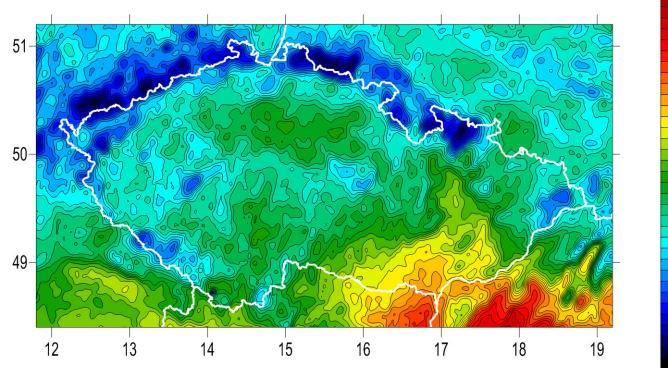




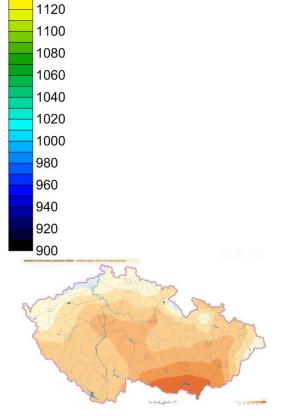
Sunshine duration at CHMI stations

Campbell Stokes heliograph replaced by SDx series of sunshine detectors from Meteoservis Vodňany

Applicability of sunshine duration


Sunshine duration (SD) can be recalculated into global radiation (GLBR) but detailed metadata are needed:

- changes of instrumentation and its location
- the real horizon at the station and its changes in time (tree growth, new buildings...)
- \rightarrow not often well documented at voluntary (i.e., majority of) stations



Q: Would it look the same if more stations were available? Aren't we missing some information on the real spatial variability of GLBR?

Solar radiation from satellites

Annual sum of downwelling solar shortwave radiation [kWh/m²] in 2013 derived by EUMETSAT LSA SAF

EUMETSAT satellite radiation data

EUMETSAT Climate Monitoring Satellite Application Facility (CM SAF)

- http://www.cmsaf.eu
- operational and climate monitoring products including surface incoming solar radiation (SIS)
- **SIS** = irradiance the **200-400 nm** wavelength region
- operational products released 8 weeks after observation at the latest

CM SAF **SARAH** (Surface Solar Radiation Data record – Heliosat) Dataset

• combining Meteosat 1st and 2nd generation data into a single homogenous dataset

ο

- 1983-2013*
- hourly, daily and monthly time resolution
- almost full disc coverage (-65° to 65° in longitude and latitude) in 0.05° spatial resolution

*) extension till 31. 12. 2014 published in October 2015

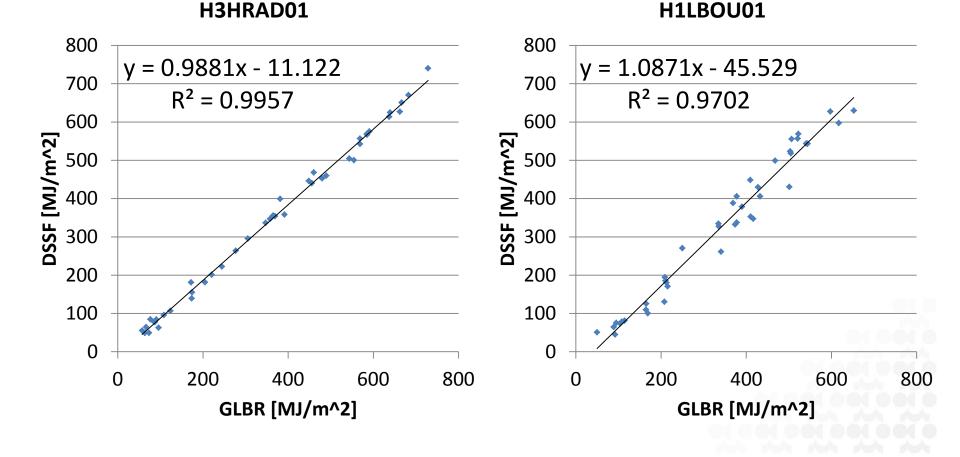
EUMETSAT satellite radiation data

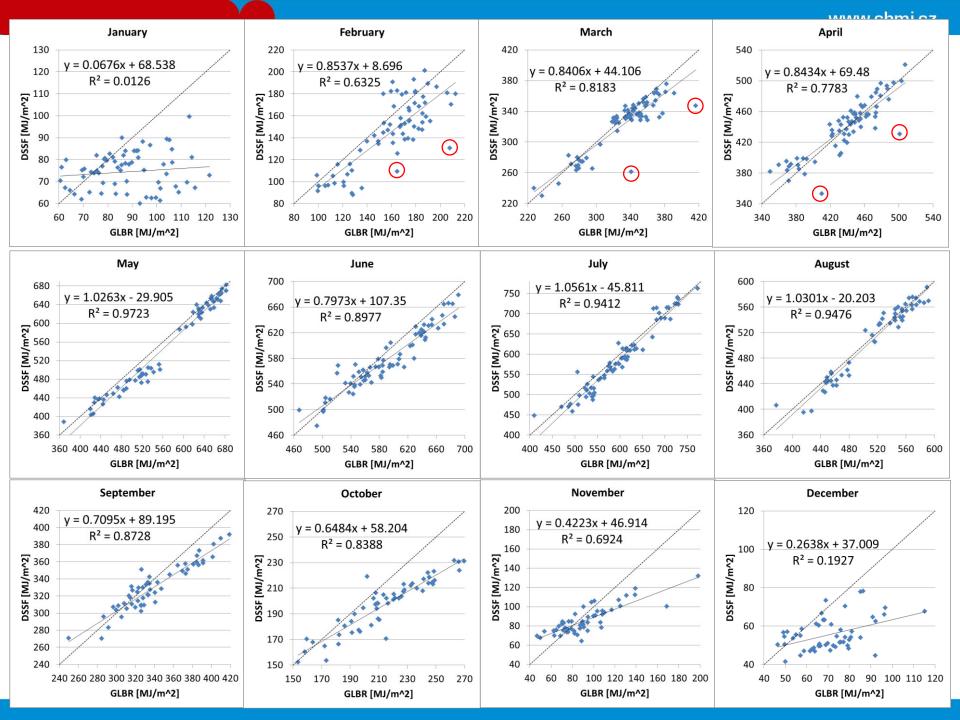
EUMETSAT Land Surface Analysis Satellite Application Facility (LSA SAF)

- http://landsaf.meteo.pt
- operational products including Downward Surface Shortwave Flux (DSSF)
- DSSF = irradiance in the wavelength interval 300-4000 nm
- operational products released instantly
- 2009 today*
- 30 minutes and daily time resolution
- full disc coverage over land in 0.05° spatial resolution

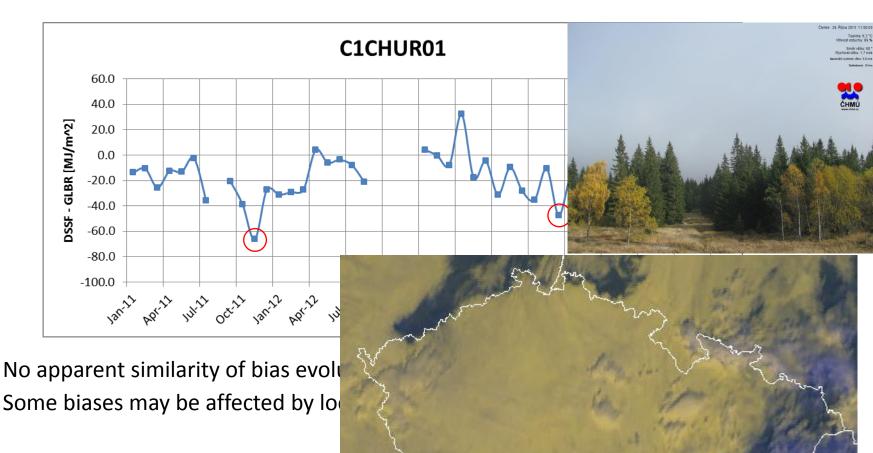
*) based on LSA SAF Web User Interface

DSSF validation against stations

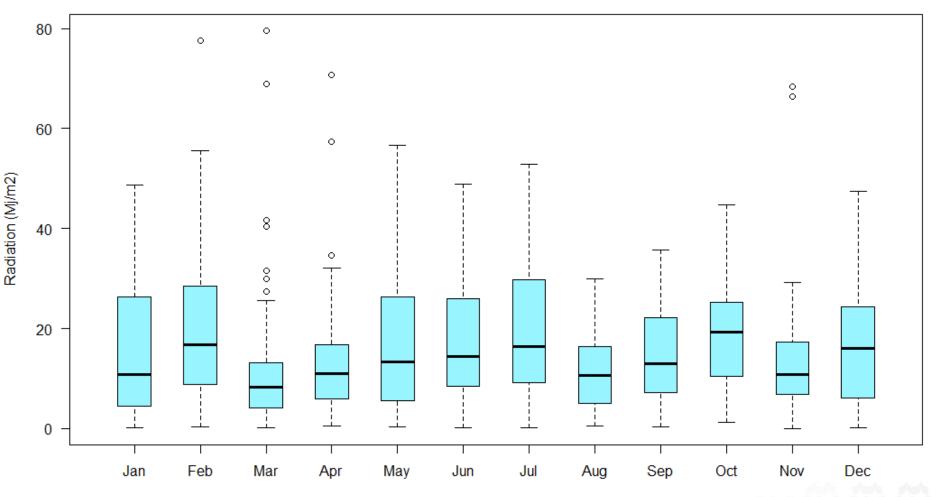

Comparison of monthly sums of LSA SAF DSSF estimates with CHMI stations measurements of global radiation (GLBR) in 2011-2014

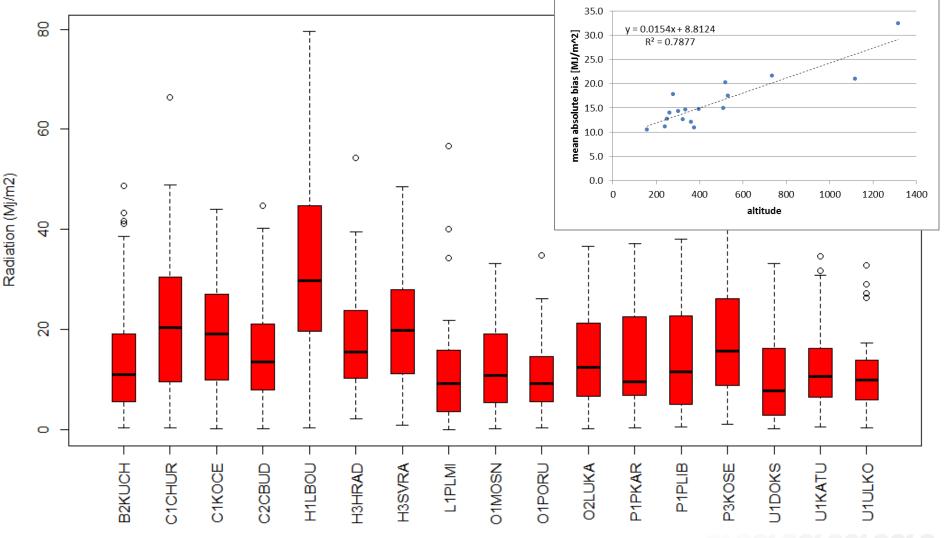

- up to 19 stations versus the nearest grid point (mean distance: 2.1 km)
- DSSF data partly incomplete (Aug 2011, Sep-Dec 2012 missing/omitted)

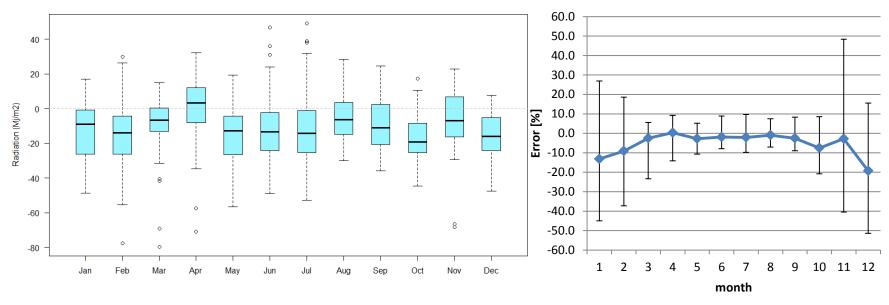
Station ID	LATITUDE	LONGITUDE	ALTITUDE	DISTANCE [km]	AZIMUTH [°]
B1HOLE01	17.57	49.320556	222	2.61	123.8
B2BTUR01	16.688889	49.153056	241	0.73	-152.3
B2KUCH01	16.085278	48.881111	334	2.60	-115.5
C1CHUR01	13.615278	49.068333	1118	1.81	5.9
C1KOCE01	13.838611	49.467222	519	2.87	118.0
C2CBUD01	14.469722	48.951944	395	0.74	-163.1
H1LBOU01	15.544927	50.769883	1315	3.49	-72.3
H3HRAD01	15.838452	50.177649	278	2.49	-52.0
H3SVRA01	16.034167	49.735	734	0.63	118.3
L1PLMI01	13.378889	49.764722	360	2.87	-73.8
O1MOSN01	18.119167	49.698333	250	0.93	-86.3
O1PORU01	18.1594	49.8253	239	3.08	116.9
O2LUKA01	16.953333	49.652222	510	2.75	-64.1
P1PKAR01	14.427778	50.069167	261	2.48	-120.8
P1PLIB01	14.446944	50.007778	302	2.04	-104.1
P3KOSE01	15.080556	49.573611	532	3.02	76.9
U1DOKS01	14.17	50.45889	158	1.43	60.2
U1KATU01	13.32806	50.37667	322	1.33	163.9
U1ULKO01	14.04111	50.68333	375	1.53	-166.0


DSSF & GLBR monthly sums

• DSSF estimates against in-situ records over the whole period 2011-2014 at selected two stations

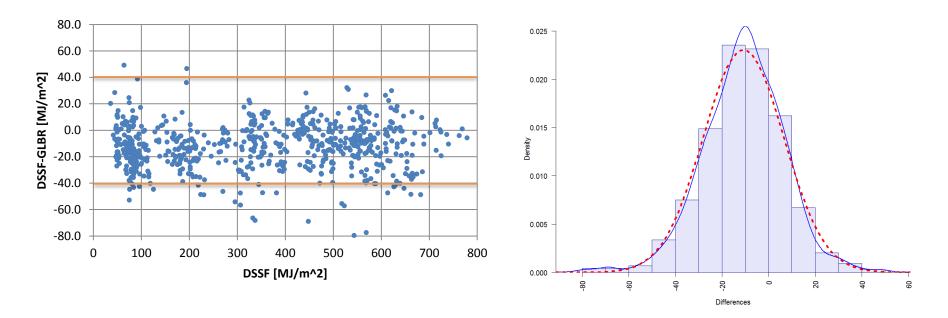



DSSF-GLBR differences in time


Annual course: bias & absolute bias

Bias & absolute bias among stations

Size and significance of errors


LSA SAF Product Requirements for DSSF at the MSG pixel resolution for 30-min or daily data:

- Accuracy 10% for DSSF > 200 W/m²
- Accuracy 20 W/m² for DSSF < 200 W/m²

CM SAF Target Accuracy for monthly mean surface solar irradiance (SIS) in SARAH:

• 15 W/m² corresponding to ca. 40 MJ/m² in monthly sum

Size and significance of errors

- Majority of data points fit within ±40 MJ/m² quality target
- In the summer half year ±10% relative error is met

Conclusions & outlooks

- LSA SAF DSSF provides realistic but biased estimates of Downwelling Shortwave Solar Flux and derived monthly totals of irradiance
- Negative bias dominates
- Higher elevated locations (mountains) show bigger errors
- For operational products of CHMI only summer half-year data seems to be suitable (relative error <10%)
- Validation of the CM SAF SARAH dataset on daily/monthly time scale
- Exploring a potential of the SARAH to be used as a reference dataset to correct a bias of climate models → global radiation from GCMs/RCMs often used by models of the climate change impact community)

Thank you for attention

MINISTERIO DE AGRICULTURA, ALIMENTACIÓN Y MEDIO AMBIENTE

Climatological Atlas of Northeastern Atlantic and Western Mediterranean for the period 1981-2010 based on ERA-Interim Reanalysis

> José A. Guijarro, Justo Conde, Joan Campins, M^a Luisa Orro and M^a Ángeles Picornell

> > State Meteorological Agency (AEMET), Spain

EUMETNET Data Management Workshop St. Gallen, Switzerland, 28-30 October 2015

Outline

+ +

+ +

Motivation

Methodology

ERA-I vs buoy data

Final products

▲□▶ ▲圖▶ ▲ 필▶ ▲ 필▶ ■ ● ○QC

Motivation

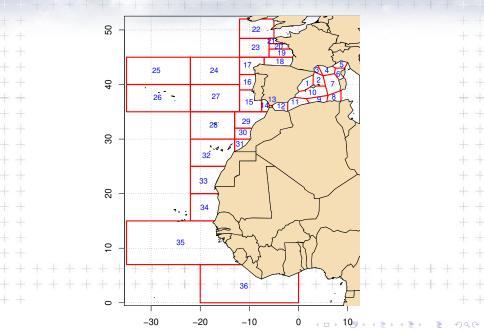
- Maritime climate information is very important for the long term planning of a number of activities as maritime transportation of goods and people, fishing, touristic cruises, etc.
- A number of atlas of waves and meteorological conditions on seas have been produced historically (Weather Bureau, 1938; HMSO, 1949; KNMI, 1957; Crutcher, 1969; Young, 1996; Lindau, 2001; Steurer, 1990), one of the most recent developed by KNMI based on ERA-40 reanalysis (Sterl and Caires, 2005).

Motivation

- Maritime climate information is very important for the long term planning of a number of activities as maritime transportation of goods and people, fishing, touristic cruises, etc.
- A number of atlas of waves and meteorological conditions on seas have been produced historically (Weather Bureau, 1938; HMSO, 1949; KNMI, 1957; Crutcher, 1969; Young, 1996; Lindau, 2001; Steurer, 1990), one of the most recent developed by KNMI based on ERA-40 reanalysis (Sterl and Caires, 2005).

+ +

Motivation


- Maritime climate information is very important for the long term planning of a number of activities as maritime transportation of goods and people, fishing, touristic cruises, etc.
- A number of atlas of waves and meteorological conditions on seas have been produced historically (Weather Bureau, 1938; HMSO, 1949; KNMI, 1957; Crutcher, 1969; Young, 1996; Lindau, 2001; Steurer, 1990), one of the most recent developed by KNMI based on ERA-40 reanalysis (Sterl and Caires, 2005).
- Our aim was to update the maritime climate information to the period 1981-2010 for the areas for which the Spanish Meteorological Agency (AEMET) issues predictions of maritime meteorology.

+ +

Maritime zones

+ +

+ +

- ERA-Interim reanalysis was used as source of data due to its high quality and resolution (1°).
- Wind and wave variables were downloaded from 35°W to 12°E and 0 to 52°N and for the period 1981-2013.
- Reanalysis data were compared with deep water buoy measurements from the Spanish Agency Puertos del Estado for the five years 2009-2013.
- Maps and graphs of significant wave height, wind speed, mean period and sea surface temperature were developed with programs written in R.
- ► The final atlas was produced as a PDF document generated with LATEX.

+ +

+ +

- ERA-Interim reanalysis was used as source of data due to its high quality and resolution (1°).
- Wind and wave variables were downloaded from 35°W to 12°E and 0 to 52°N and for the period 1981-2013.
- Reanalysis data were compared with deep water buoy measurements from the Spanish Agency Puertos del Estado for the five years 2009-2013.
- Maps and graphs of significant wave height, wind speed, mean period and sea surface temperature were developed with programs written in R.
- ► The final atlas was produced as a PDF document generated with LATEX.

+ +

COBERNO CONTRACTOR ALMENTAC

+ +

- ERA-Interim reanalysis was used as source of data due to its high quality and resolution (1°).
- Wind and wave variables were downloaded from 35°W to 12°E and 0 to 52°N and for the period 1981-2013.
- Reanalysis data were compared with deep water buoy measurements from the Spanish Agency Puertos del Estado for the five years 2009-2013.
- Maps and graphs of significant wave height, wind speed, mean period and sea surface temperature were developed with programs written in R.
- ► The final atlas was produced as a PDF document generated with LATEX.

+ +

COMERCIA DE LEMMA COMERCIA ALMENTACIO

+ +

- ERA-Interim reanalysis was used as source of data due to its high quality and resolution (1°).
- Wind and wave variables were downloaded from 35°W to 12°E and 0 to 52°N and for the period 1981-2013.
- Reanalysis data were compared with deep water buoy measurements from the Spanish Agency Puertos del Estado for the five years 2009-2013.
- Maps and graphs of significant wave height, wind speed, mean period and sea surface temperature were developed with programs written in R.
- ► The final atlas was produced as a PDF document generated with LaT_EX.

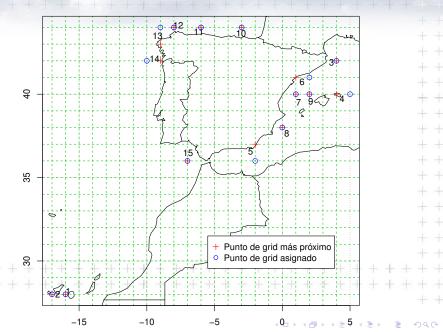
+ +

COBERNO DE ERVINA PRINTERO

+ +

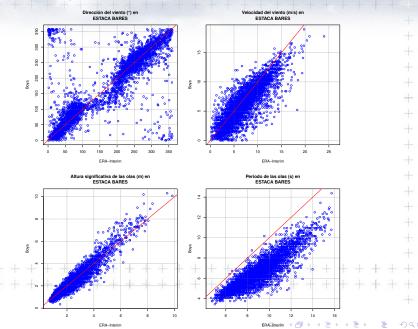
- ERA-Interim reanalysis was used as source of data due to its high quality and resolution (1°).
- Wind and wave variables were downloaded from 35°W to 12°E and 0 to 52°N and for the period 1981-2013.
- Reanalysis data were compared with deep water buoy measurements from the Spanish Agency Puertos del Estado for the five years 2009-2013.
- Maps and graphs of significant wave height, wind speed, mean period and sea surface temperature were developed with programs written in R.
- ► The final atlas was produced as a PDF document generated with LATEX.

COBERNO DE ERMAN PHOTO AMBENTE

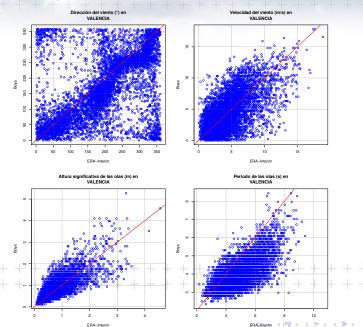

+ +

- ERA-Interim reanalysis was used as source of data due to its high quality and resolution (1°).
- Wind and wave variables were downloaded from 35°W to 12°E and 0 to 52°N and for the period 1981-2013.
- Reanalysis data were compared with deep water buoy measurements from the Spanish Agency Puertos del Estado for the five years 2009-2013.
- Maps and graphs of significant wave height, wind speed, mean period and sea surface temperature were developed with programs written in R.
- ► The final atlas was produced as a PDF document generated with LATEX.
- An interactive R program allows the production of other maps and graphs not included in the atlas.

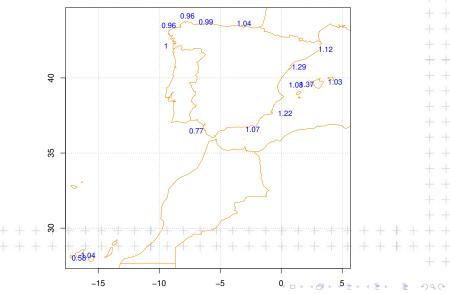
Maritime zones



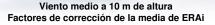
ERA-I vs buoy data

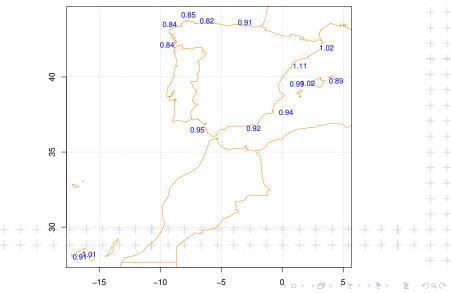


ERA-I vs buoy data



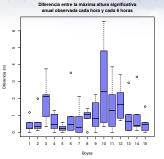
H_s corrections

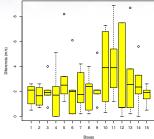

Altura significativa de las olas Factores de corrección de la media de ERAi

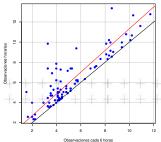


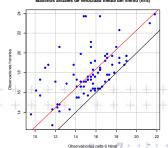
Wind speed corrections










Diferencia entre la máxima velocidad media del viento

anual observada cada hora y cada 6 horas

+ +

+ +

Monthly and annual maps of:

- Percentiles 50, 95 and 100 of significant wave height, wind speed, mean period and sea surface temperature.
- Wind roses
- Frequencies of significant wave height over 2.5, 6 y 9 m
- Frequencies of wind speed over 11.1, 17.3 y 24.4 m/s
- Climatic summaries for selected 1x1° cells with:
 - Frequency tables and boxplots of the above parameters.
 - Cumulative percentile plots.
 - Monthly and annual wind roses.

★ロ▶ ★週▶ ★夏▶ ★夏▶ ■ のQQ

+ +

AEMet

+ +

Monthly and annual maps of:

- Percentiles 50, 95 and 100 of significant wave height, wind speed, mean period and sea surface temperature.
- Wind roses
- Frequencies of significant wave height over 2.5, 6 y 9 m
- Frequencies of wind speed over 11.1, 17.3 y 24.4 m/s
- Climatic summaries for selected 1x1° cells with:
 - Frequency tables and boxplots of the above parameters.
 - Cumulative percentile plots.
 - Monthly and annual wind roses.

▲口▶▲圖▶▲≣▶▲≣▶ ■ のへの

+ +

AEMet

+ +

Monthly and annual maps of:

- Percentiles 50, 95 and 100 of significant wave height, wind speed, mean period and sea surface temperature.
- Wind roses
- Frequencies of significant wave height over 2.5, 6 y 9 m
- Frequencies of wind speed over 11.1, 17.3 y 24.4 m/s
- Climatic summaries for selected 1x1° cells with:
 - Frequency tables and boxplots of the above parameters.
 - Cumulative percentile plots.
 - Monthly and annual wind roses.

・ロト・日本・日本・日本・日本

+ +

AEMet

+ +

Monthly and annual maps of:

- Percentiles 50, 95 and 100 of significant wave height, wind speed, mean period and sea surface temperature.
- Wind roses
- Frequencies of significant wave height over 2.5, 6 y 9 m
- Frequencies of wind speed over 11.1, 17.3 y 24.4 m/s
- Climatic summaries for selected 1x1° cells with:
 - Frequency tables and boxplots of the above parameters.
 - Cumulative percentile plots.
 - Monthly and annual wind roses.

+ +

+ +

Monthly and annual maps of:

- Percentiles 50, 95 and 100 of significant wave height, wind speed, mean period and sea surface temperature.
- Wind roses
- Frequencies of significant wave height over 2.5, 6 y 9 m
- Frequencies of wind speed over 11.1, 17.3 y 24.4 m/s
- Climatic summaries for selected 1x1° cells with:
 - Frequency tables and boxplots of the above parameters.
 - Cumulative percentile plots.
 - Monthly and annual wind roses.

+ +

+ +

Monthly and annual maps of:

- Percentiles 50, 95 and 100 of significant wave height, wind speed, mean period and sea surface temperature.
- Wind roses
- Frequencies of significant wave height over 2.5, 6 y 9 m
- Frequencies of wind speed over 11.1, 17.3 y 24.4 m/s
- Climatic summaries for selected 1x1° cells with:
 - Frequency tables and boxplots of the above parameters.
 - Cumulative percentile plots.
 - Monthly and annual wind roses.

Atlas contents

+ +

+ +

Monthly and annual maps of:

- Percentiles 50, 95 and 100 of significant wave height, wind speed, mean period and sea surface temperature.
- Wind roses
- Frequencies of significant wave height over 2.5, 6 y 9 m
- Frequencies of wind speed over 11.1, 17.3 y 24.4 m/s
- Climatic summaries for selected 1x1° cells with:
 - Frequency tables and boxplots of the above parameters.
 - Cumulative percentile plots.
 - Monthly and annual wind roses.

Atlas contents

+ +

+ +

<ロ> (四) (四) (三) (三) (三) (三)

Monthly and annual maps of:

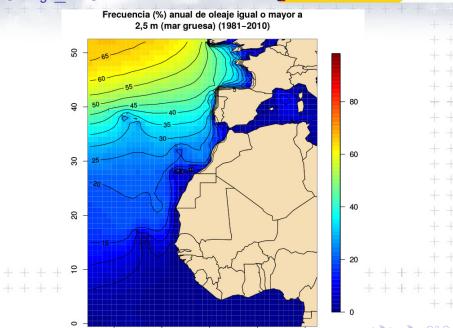
- Percentiles 50, 95 and 100 of significant wave height, wind speed, mean period and sea surface temperature.
- Wind roses
- Frequencies of significant wave height over 2.5, 6 y 9 m
- Frequencies of wind speed over 11.1, 17.3 y 24.4 m/s
- Climatic summaries for selected 1x1° cells with:
 - Frequency tables and boxplots of the above parameters.
 - Cumulative percentile plots.
 - Monthly and annual wind roses.

Atlas contents

+ +

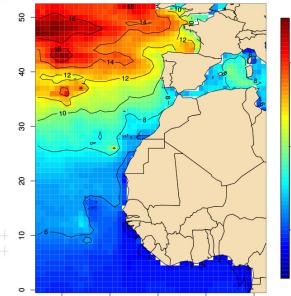
+ +

<ロ> (四) (四) (三) (三) (三) (三)


Monthly and annual maps of:

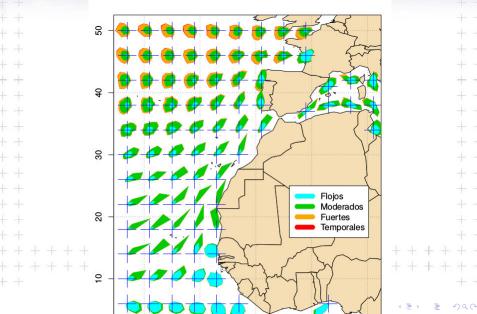
- Percentiles 50, 95 and 100 of significant wave height, wind speed, mean period and sea surface temperature.
- Wind roses
- Frequencies of significant wave height over 2.5, 6 y 9 m
- Frequencies of wind speed over 11.1, 17.3 y 24.4 m/s
- Climatic summaries for selected 1x1° cells with:
 - Frequency tables and boxplots of the above parameters.
 - Cumulative percentile plots.
 - Monthly and annual wind roses.

% of $H_s \ge 2.5$ m


Max. H_s for 100 years R.P.

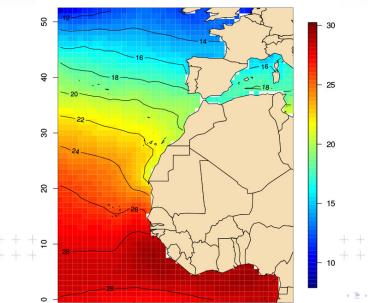
15

Máximos probables de altura significativa del oleaje (m) para un periodo de retorno de 100 años


(目)▶ 目 のへの

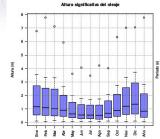
Wind roses

Rosas de los vientos (octubre, 1981-2010)

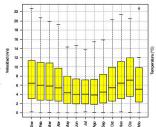


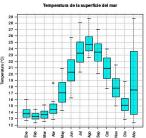
SST (December p.95)

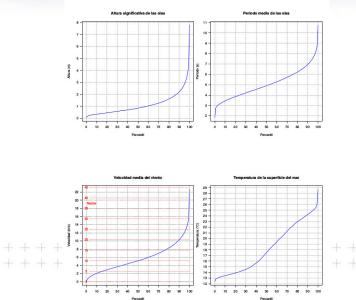
Temperatura del mar (°C) Percentil 95 (diciembre, 1981–2010)



Boxplots


MINISTERIO DE AGRICULTURA, ALMENTACIÓN Y MEDIO AMBIENTE

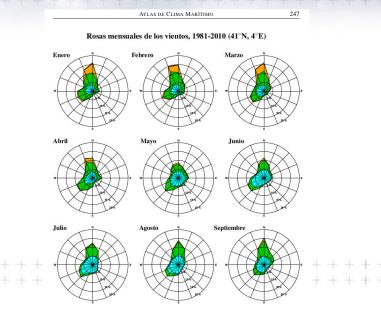




Accumulated percentiles

Percentiles anuales 1981-2010 (41°N, 4°E)

MINISTERIO EL AGRICUATURA ALMENTACIÓN THEORO ANBERNE


GOBIERNO DE ESPAÑA

▶ ★ □□ ▶ ★ 臣 ▶ ★ 臣 ▶ ○ 臣 ○ � �

Monthly wind roses

et

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Final remarks

+ +

+ +

- This tool is helping our production staff in their work related with the maritime environment.
- The interactive application gives more flexibility for acquiring maps and graphs for locations or thresholds not included in the Atlas.
- We acknowledge the ECMWF for the generation and maintenance of the ERA-Interim reanalysis.

Final remarks

+ +

+ +

- This tool is helping our production staff in their work related with the maritime environment.
- The interactive application gives more flexibility for acquiring maps and graphs for locations or thresholds not included in the Atlas.
- We acknowledge the ECMWF for the generation and maintenance of the ERA-Interim reanalysis.

Final remarks

+ +

・ロット (雪) (日) (日)

э.

+ +

- This tool is helping our production staff in their work related with the maritime environment.
- The interactive application gives more flexibility for acquiring maps and graphs for locations or thresholds not included in the Atlas.

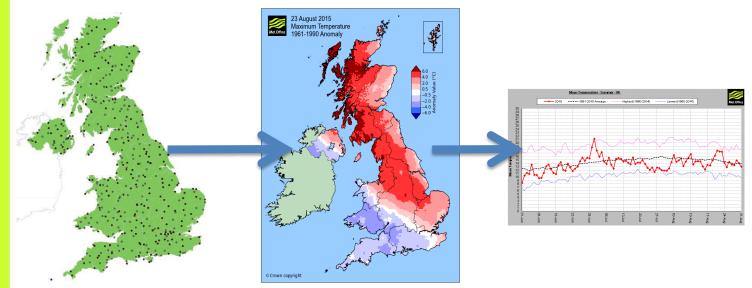
We acknowledge the ECMWF for the generation and maintenance of the ERA-Interim reanalysis.

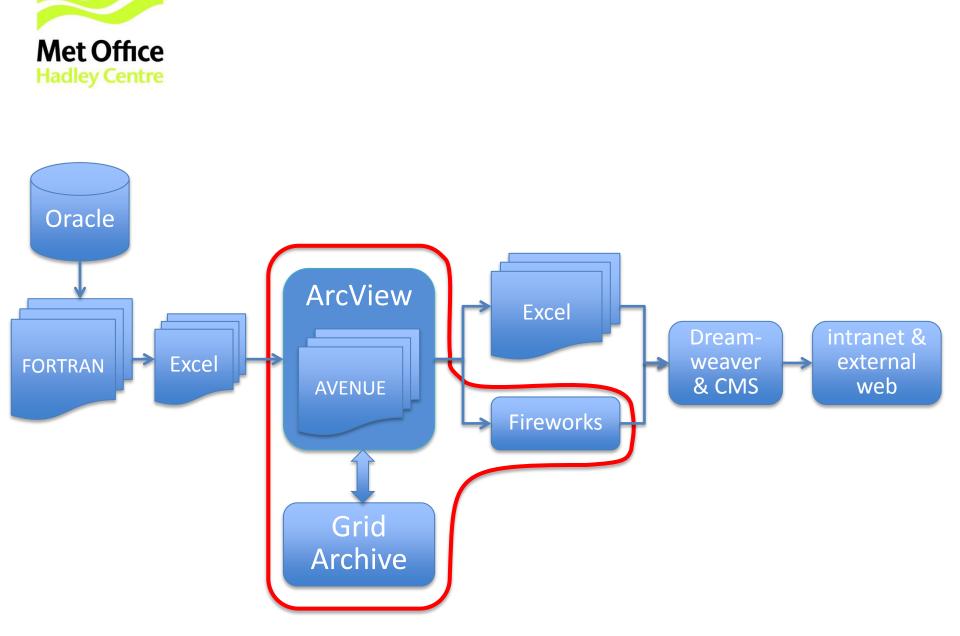
Climate Grid

Software for creating national climate data products and services

Dan Hollis, Ian Edwards, Mark McCarthy

Data Management Workshop, St Gallen, Switzerland, 28-30 October 2015


 \approx



Climate Grid

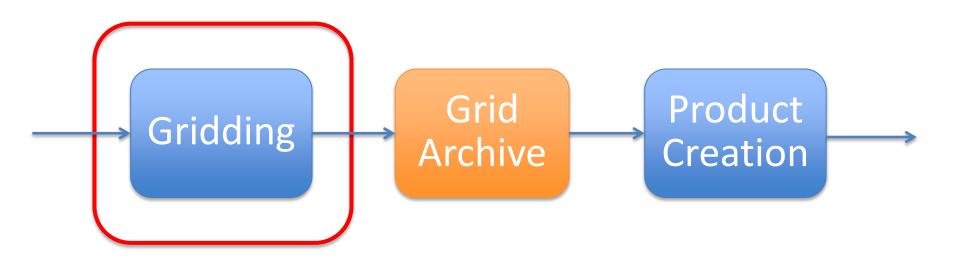
Aim:

Develop a **portable**, **modular** and **traceable** code base following **open** software standards to provide a tool kit for the generation, exploration and visualisation of UK climate statistics.

Development process

Test-driven development

Iris 1.8


Python library for analysing and visualising meteorological and oceanographic data sets.

http://scitools.org.uk/iris/

Code refactoring

Climate Grid Components

Gridding Overview

Gridding Process

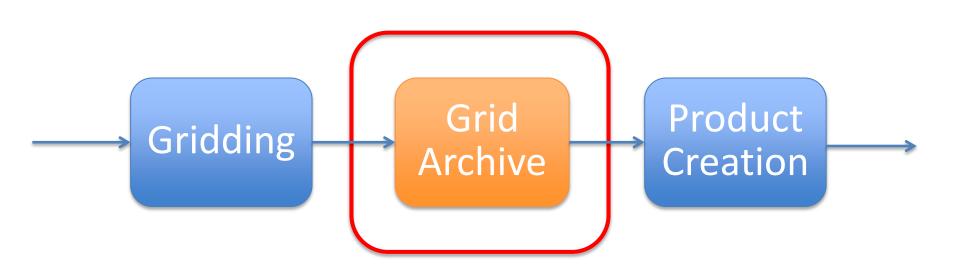
Gridding Process


```
idw_actuals()
idw_anomalies()
idw_regression_residual()
idw_regression_residuals_anomalies()
```


System Configuration

- Paths to system resources
- CF metadata
- Grid definition (extent, projection, resolution etc)
- Gridding method (by variable, month and run type)
- Legends and colours for maps

Indexed via 'short_name' = a string combining the temporal resolution and variable name


- e.g. monthly_maxtemp
- e.g. daily_rainfall

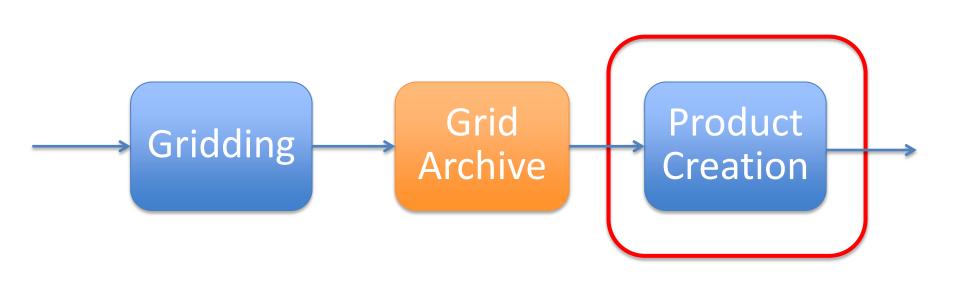
•System resources:

- Station metadata
- Product templates
- Region definitions (shapefiles and raster masks)
- Grids of the independent regression variables



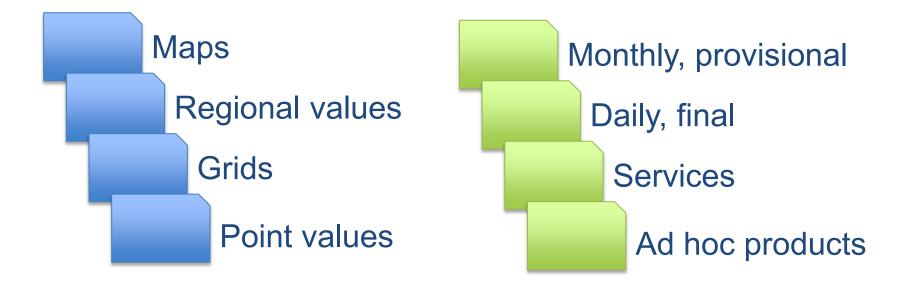
Climate Grid Components

Grid Archives


\grid\variable\year\mm.nc
\station\variable\year\mm.nc

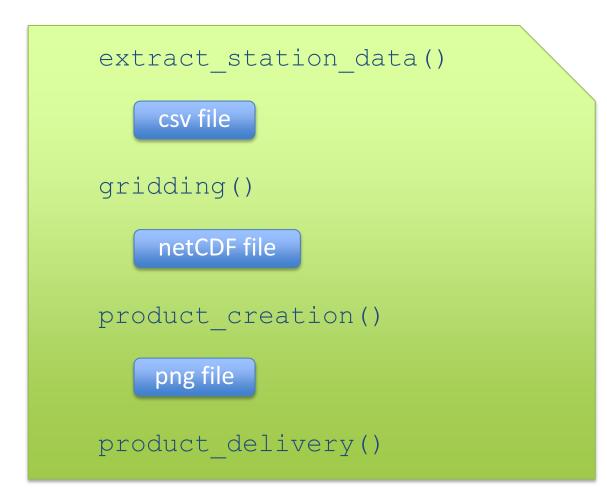
```
my_archive = GridArchive(path, ...)
```

```
combined_archive = GridArchiveHierarchy(
    final_archive, provisional_archive, historic_archive)
```



Climate Grid Components

Products and Processes



Automation

🙋 EWB mk2 v1.31 Profile: n:\gis\ewl		2\master\default.ewb	×	🔍 EWB Map Production Utility 🔀
Table data Analyses	Gridding Parameters Analysis Cell Size 5000 Final Interpolation Method	Cell Size 5000 Regression Cell Size	1000	Map Template UK Refresh Output Location
Grid data Regression Gridding	Inverse distance weight Power 3 Radius 100000	🞗 EWB Product Generator		BATCH PROCESS Element Days of Rain >= 1 mm Frequency Daily LTA Period 1961 - 1990
Contouring Hatching Layout HTML Tabulate	O Inverse distance weight / density Power 3 Radius 150000 Spline Weight 0.1 Points 12 Polynomial least squares Order	Element Rainfall - Amount	Product Type Grids C ArcView Ma ASCII Grid ASCII Column (Contouring	
	OK Cancel Load	Monthly Series Selection (mm/yyyy) Start Date End Date Intro- LTA Selection Nonthly Seasonal Annual Output Location Internation Naming format element YYYY-MM type	Areal Stats-Shapefile Field Statistic Greater that Point Locations(s)-	Grid Legend Adhoc_annual_5dayrain_TL Legend title Enter the title for your map in the box below (maximum 3 lines): Select an extra theme you want added to the map:
		Go Exit	© Multi Standard Tables	Shapefile Climate District Boundaries

Automation

cron

Rose: A framework for managing and running meteorological suites.

http://metomi.github.io/ rose/doc/rose.html

Quality Control

Hadley Centre 💋 QGIS 2.4.0-Chugiak - 0 X Project Edit View Layer Settings Plugins Vector Raster Help े 🗄 🕐 🐥 🗩 🗩 🖉 💭 🔎 🗛 🖓 😂 🔍 🔍 - 👷 - 🌄 😜 📰 🔤 🛶 - 🖵 📬 💷 - 👔 🖓 3 11 B .: 1/2 1 2 3 1 (abc abc abc abc abc 8× 6.1 • -1.7 • v 😂 🚺 Add 🍞 1.1 .0.6 🖲 🚺 Home . Favourites q. C:/ D:/ H:/ 1.8 Po . 1.1 . M:/ P N:/ ė. P:/ 1.0 1.0 -0.1 **Q** U:/ MSSQL 2.0 Oracle PostGIS SpatiaLite • 0.6 2.5 WCS
 WFS
 WMS 2.4 **%** Ster. 0.5 0.5 V° -.0 3.1 •3.0 8× 1.5 Layers -8.2 🕀 📧 创 2015-09-28 daily_maxtemp 0.5 ė- 🗆 2.1 daily_maxtemp station actual . 😑 🕱 🏳 coastline 0.9 2.5 3.6 😑 🕱 🔡 daily_maxtemp anomaly 2.1 4.2 -7.99 to -6.24 0.9 -6.24 to -4.48 •2.3 -4.48 to -2.73 -2.73 to -0.98 1.1 -0.98 to 0.78 7 **4**.4 0.78 to 2.53 2.4 2.53 to 4.29 4.2 4.29 to 6.04 3.9 daily_maxtemp actual 8.42 to 9.99 9.99 to 11.55 1.4 2.3 11.55 to 13.11 13.11 to 14.67 3.6 4.7 14.67 to 16.23 1.9 16.23 to 17.79 1.0 0.9 17.79 to 19.35 1.0 19.35 to 20.92 0.9 2.9 3.0 urbar -0.1 0.3 B-X Dakes 1.0 0. 6.3 0.9 -0.6 😑 🕱 F elevation 1.0 < 20 20 - 100 2.6 3.6 100 - 200 2.8 1.5 1.2 200 - 400 S Coordinate: Scale 1:955,387 - 🗙 Render EPSG:27700 🔕 264548,776898

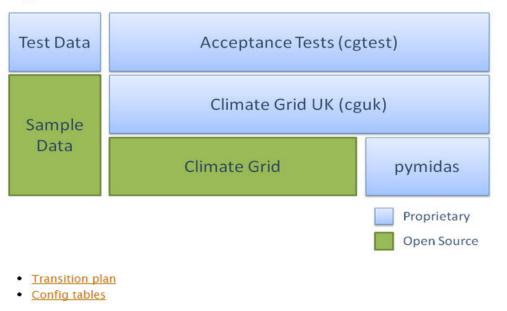
O

Current status

 Software has been used for July, August and September summaries

 No major problems but system is still bedding in (various small issues have needed fixing...)

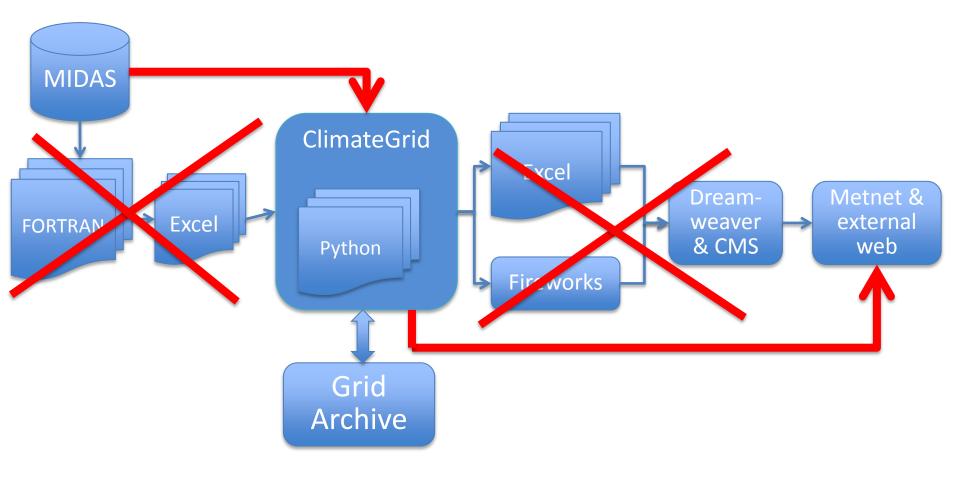
Work is ongoing in various areas:


- Memory issues when working with large networks
- Automation
- Quality control
- •Batch processing e.g. multi-month runs
- Additional system tests
- Refactoring for open source
- Documentation

Met Office Hadley Centre

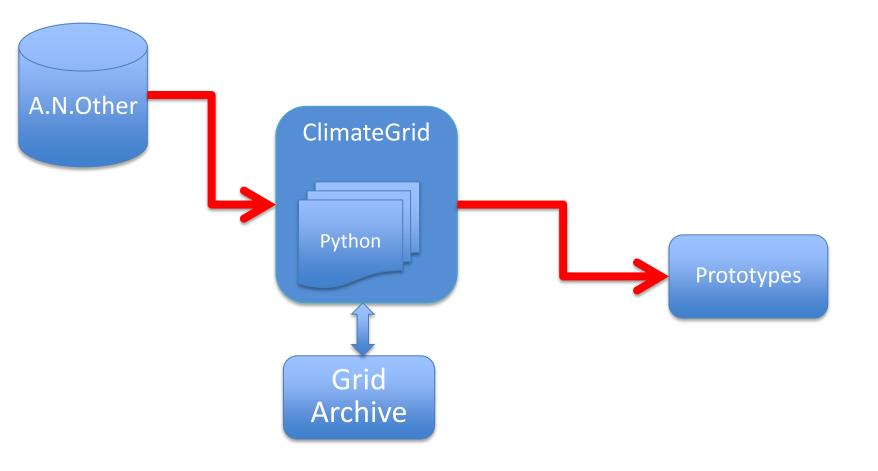
Next Steps: Sharing

Project information

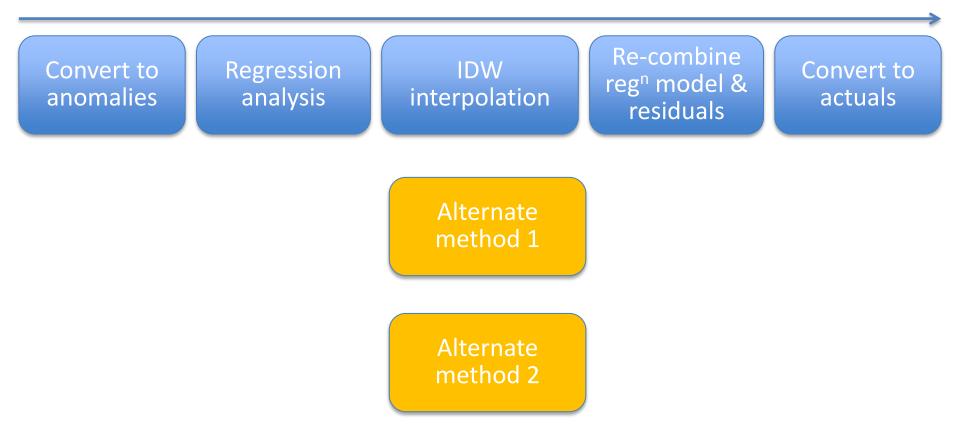

Documentation

- <u>Climate Grid</u>
- <u>Climate Grid UK</u>
- <u>Climate Grid Acceptance Tests</u>
- pymidas

Climate Grid »

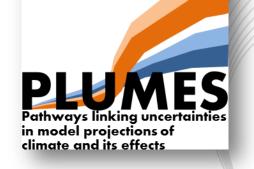


Next Steps: End-to-end



Next Steps: Portability

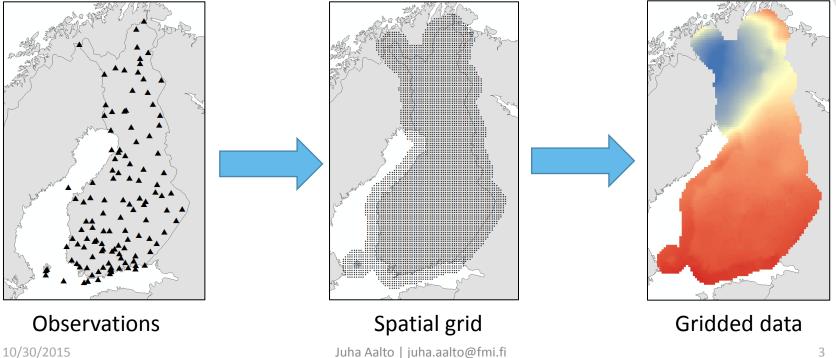
Next Steps: Methods



Producing a long-term gridded data set in Finland - uncertainty and spatio-temporal trends

Juha Aalto, Pentti Pirinen, Kirsti Jylhä

10th EUMETNET Data Management Workshop, St. Gallen, Switzerland, 30.10.2015


1. Introduction and aims

- PLUMES consortium
- Task: create a high-quality daily gridded climate data set of the key variables across 1961-2010 ("FMI_ClimGrid_1.0")
- Focus on interpolation uncertainty
- Use gridded data to investigate temporal trends in climate
- Compare the results with existing data (E-OBS)

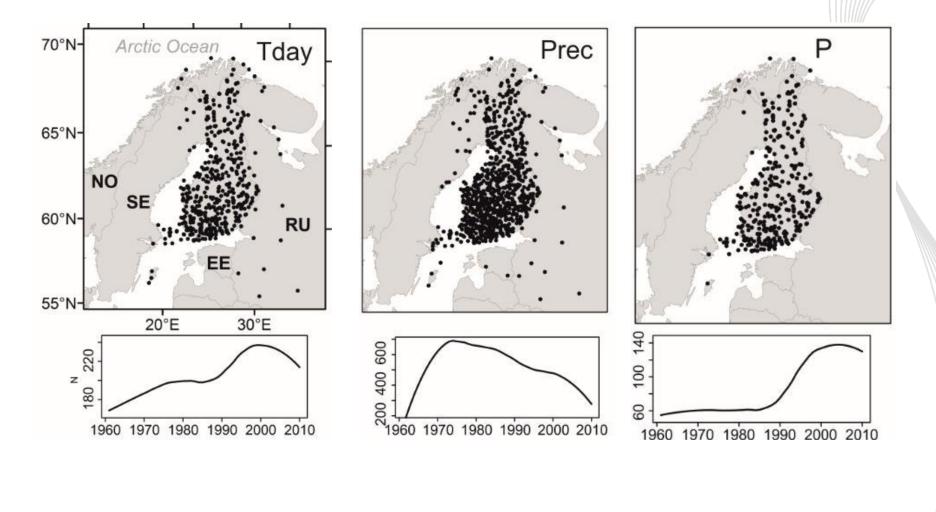
1. Introduction – gridded data

•Spatially continous data based on a set of observations Most often based on a statistical model Important applications: climate change studies, forest management, agriculture, biosphere modelling, permafrost

2. Data – observations

Seven climate variables:

mean temperature (*Tday*)
maximum temperature (*Tmax*)
minimum temperature (*Tmin*)
precipitation sum (*Prec*)
mean relative humidity (*RH*)
air pressure (*P*)


•snow depth (Sn)

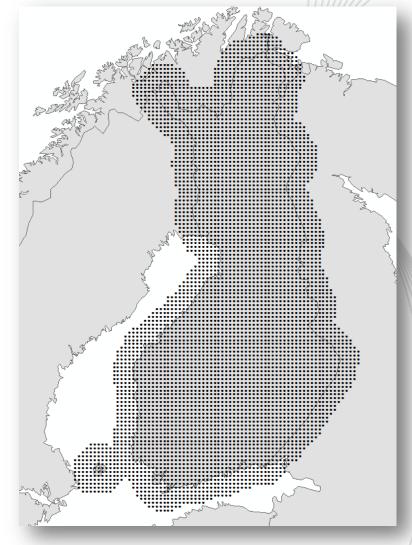
•Data sources:

- •FMI database
- •ECA&D pan-European database

•Sweden, Norway, Russian and Estonia

2. Data – observations

2. Data – quality control

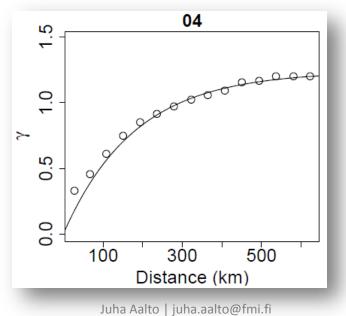

National operational QC
"Non-blended" ECA&D series
Misscodings, duplicates
Local outlier detection protocol:

compare each value to local average and stdev (station in turn excluded)
Compare the local stdev to long-term monthly stdev (1961-2010)

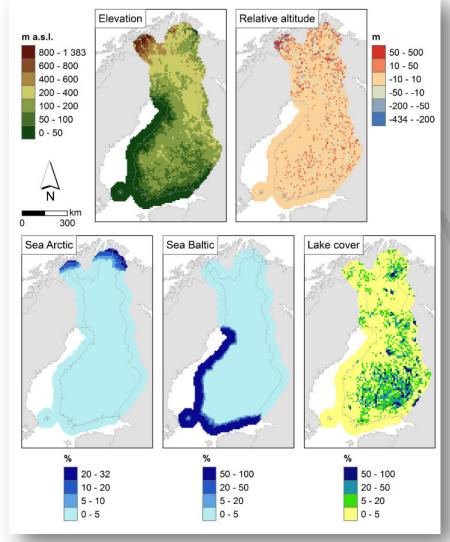
150km

2. Data – grid specifications

Spatial resolution = 10 km x 10 km Euref-FIN TM35 (epsg: 3067) 5224 points (3364 inside, 1860 outside Finland)



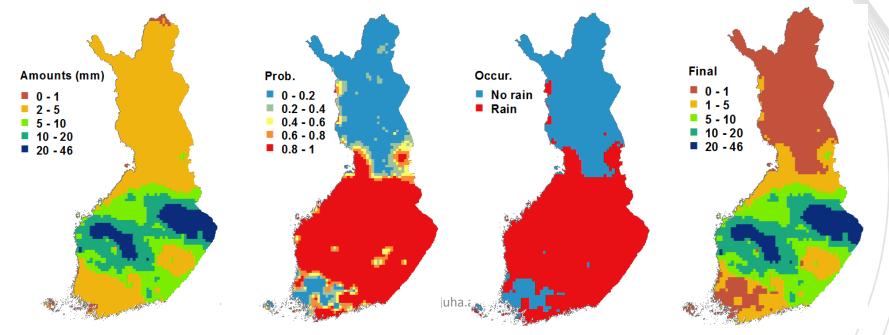
2. Methods – kriging interpolation


Kriging interpolates the value at given point using a weighted average of the know values inside a neighborhood
Weights are assigned by (decreasing) function of the distance, based on the spatial covariance structure

•Variogram is used to quantify the spatial dependency in the data

2. Data – background data

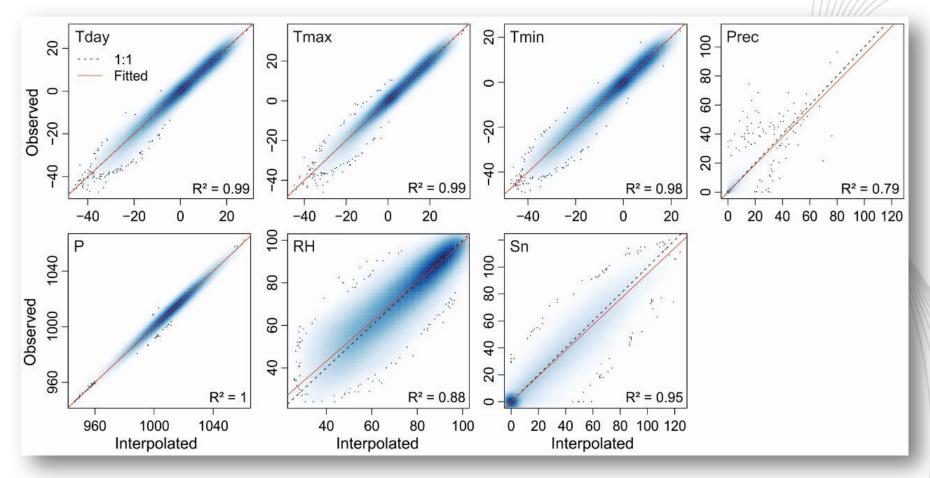
- Used as covariates in the interpolation model (i.e. trend model)
- Latitude and longitude



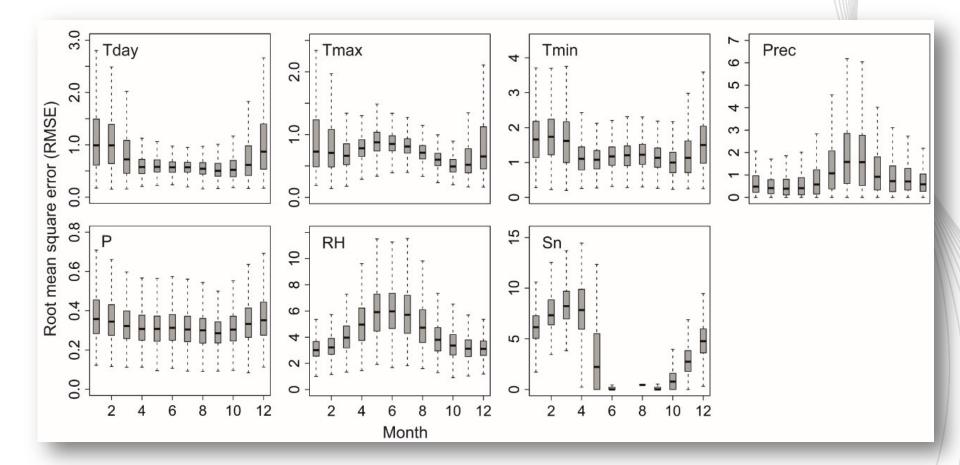
2. Methods – details

- Separate trend model was estimated for each day
- "Semi" climatological variogram models:
 - Range = monthly means of daily ranges (1961-2010)
 - Separate sill for each day
- Nugget = 30 % of the measurement precision (e.g. 0.03 for Temp)
- Exponential variogrammodels
- Global kriging

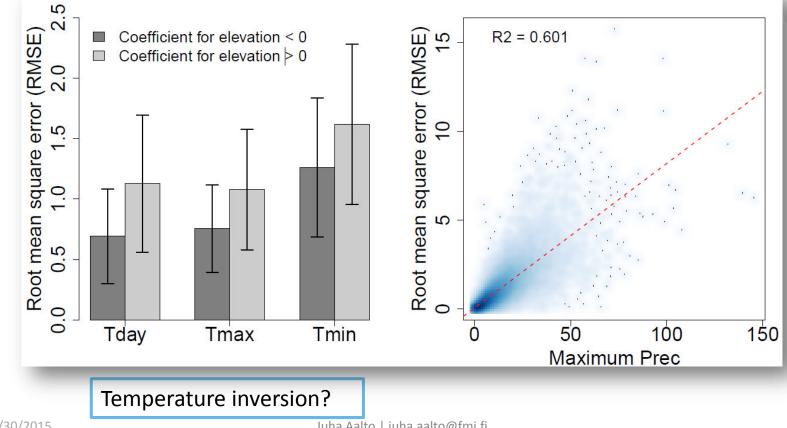
- **High and potentially discrete variation** vs. sparse observation network
- Satellite and radar data might improve
- Solution: interpolate the probability of precipitation / snow depth and combine with interpolated amounts



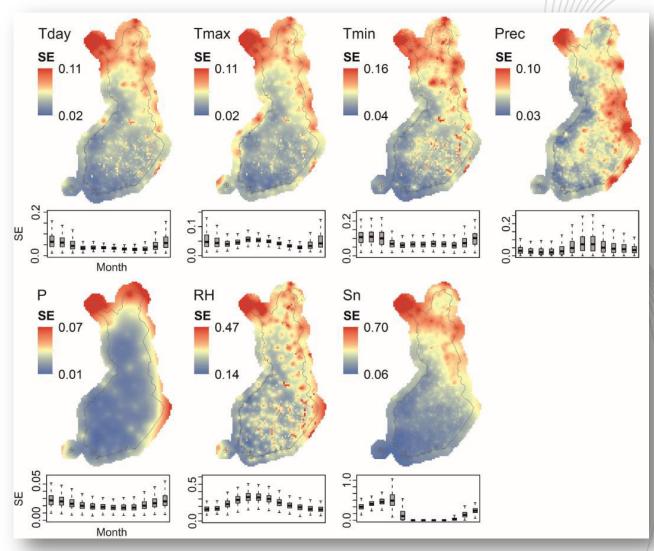
2. Methods - evaluation

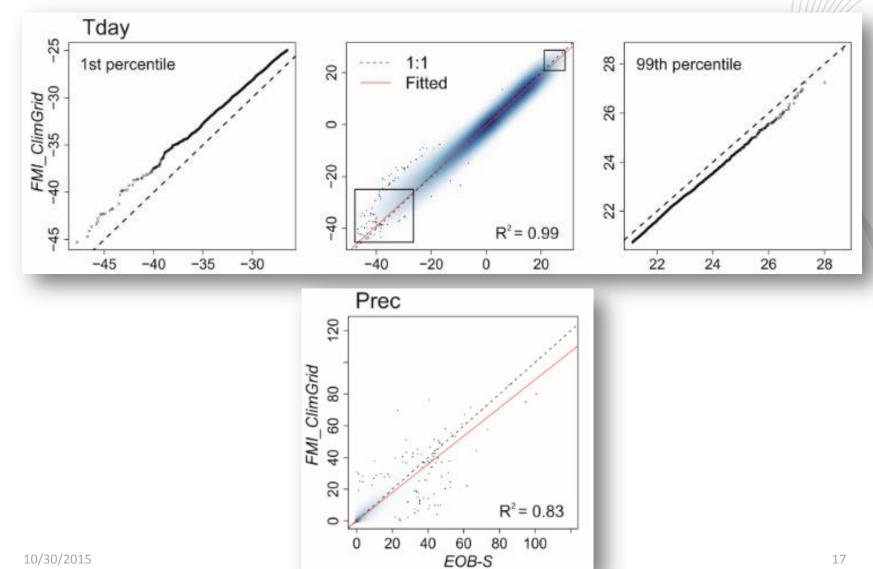

- •20 independent evaluation stations
- Compare the observed and interpolated values

3. Results – interpolation accuracy


3. Results – seasonal variation in accuracy

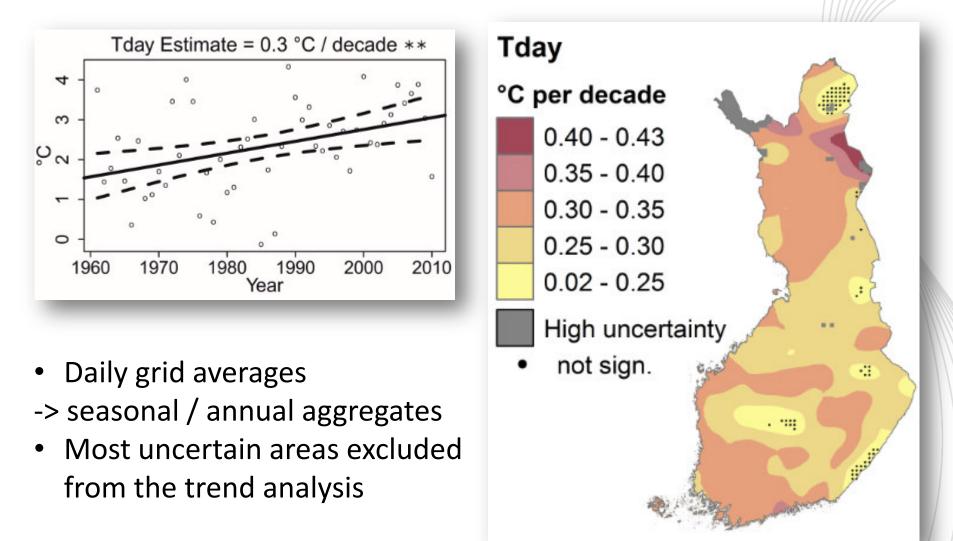
3. Results – interpolation accuracy

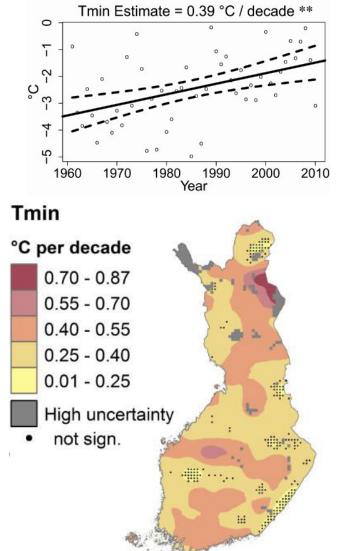

 Some meteorological conditions are more challenging to interpolate than others...

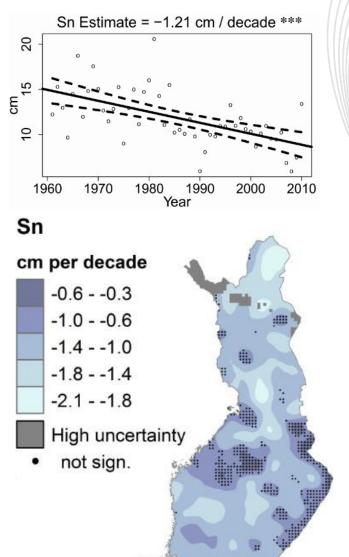

3. Results - uncertainty

Sources of uncertainty:

- Observations (measurements, network, inhomogeneities ...)
- Background variables (georeferencing, averaging...)
- Interpolation method
- 50 random permutation / day
 -> 50 different interpolations
- Daily uncertainty estimate for each variable


3. Results – a comparison with E-OBS


10/30/2015


17

4. Trends in past climate

4. Trends in past climate

5. Conclusions

- Long-term gridded dataset were succesfully produced
- Daily **permutation-based** uncertainty estimates
- Clear, but locally varying signal of past climate change
- Wind and solar radiation in the future
- The dataset will be made freely available with regular updates
- Manuscript in progress...

Computing environment

- **R** in linux server (FMI supercomputer "Voima")
- Required R-packages: <u>gstat</u>, <u>sp</u>, rgdal, raster, maptools, PresenceAbsence, Roracle
- Total time of calculations ~ 6 days / per variable

More information:

juha.aalto@fmi.fi pentti.pirinen@fmi.fi

FINNISH METEOROLOGICAL INSTITUTE

www.fmi.fi

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Temperature grid dataset for climate monitoring based on homogeneous time series in Switzerland

F. A. Isotta, M. Begert and C. Frei 30th October 2015

Introduction: motivation, method

Results and evaluation

Conclusion and outlook

Long-term consistent grid data for temperature in Switzerland F. Isotta, M. Begert and C. Frei

Introduction: motivation, method

Results and evaluation

Conclusion and outlook

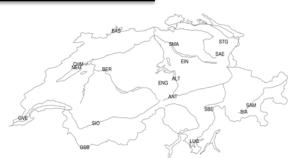
Long-term consistent grid data for temperature in Switzerland F. Isotta, M. Begert and C. Frei

Introduction - Motivation

- Develop new datasets for monthly temperature and precipitation suitable for climate monitoring (regularly updated)
 - (1864-) 1901-2010 (-now) and 1961-2010 (-now)
 - Only with homogenized station data
 - Continuous measurements (no gaps)
 - Constant station density (same stations every time step)

Introduction - Motivation

• The amount of stations fulfilling all requirements is low

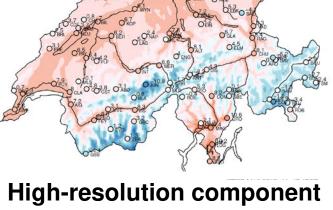

	Temperature	Precipitation
1864-2010	18	14
1901-2010	28	39
1961-2010	57	336

T, 1961-2010, 57 stations

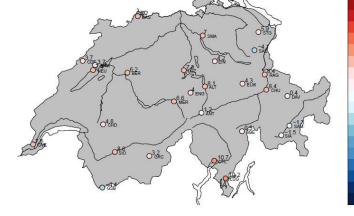
T, 1901-2010, 28 stations


T, 1864-2010, 18 stations

P, 1961-2010, 336 stations

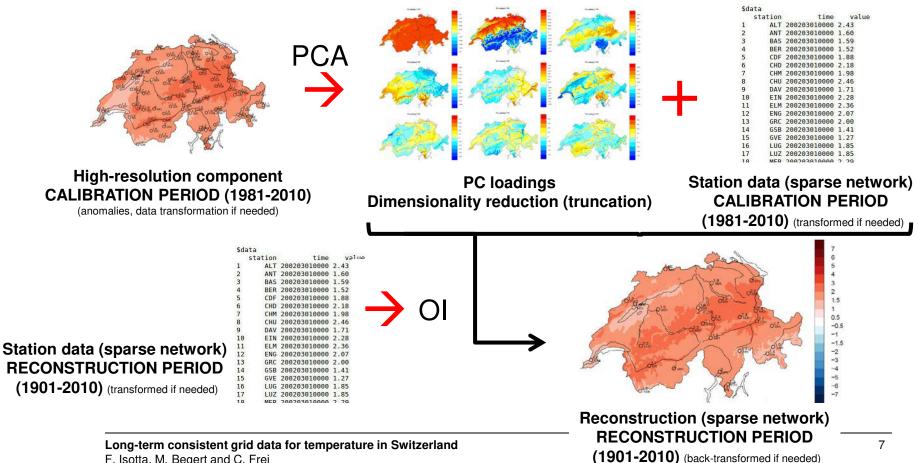


P, 1901-2010, 39 stations



P, 1864-2010, 14 stations

Introduction - Method



1981-2010, ~85 stations 2-km grid dataset Long-term component 1901-2010 28 stations (continuous)

RSOI - Overview J

Reduced Space Optimal Interpolation (Kaplan et al., 1997; Schmidli et al. 2001, 2002; Schiemann et al., 2010; Masson et al., 2015)

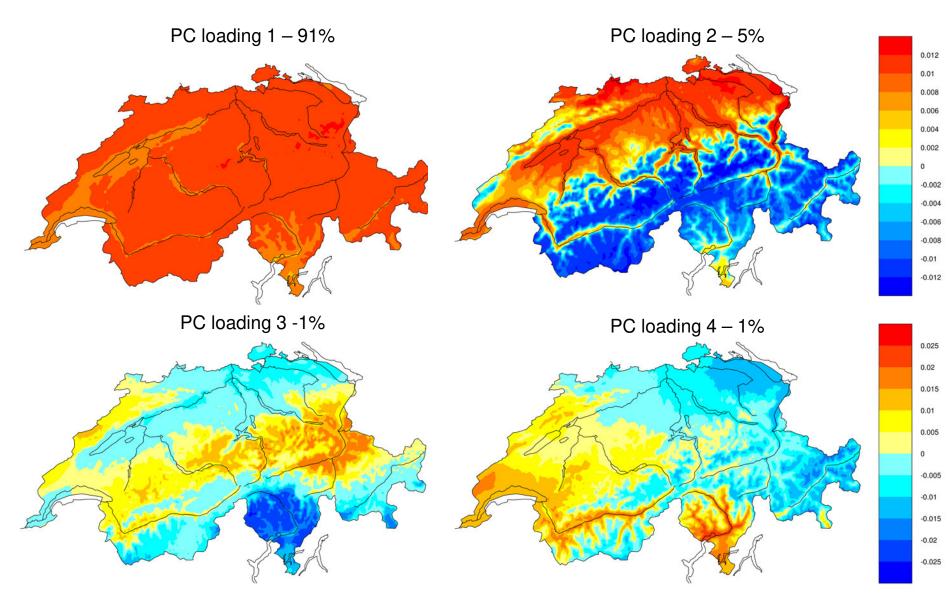
F. Isotta, M. Begert and C. Frei

Introduction: motivation, method

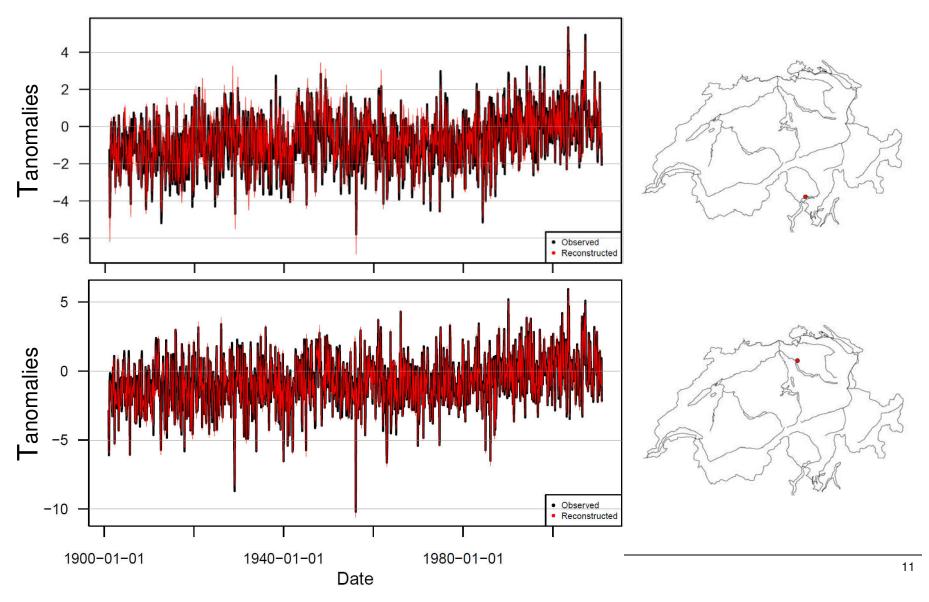
Results and evaluation

Conclusion and outlook

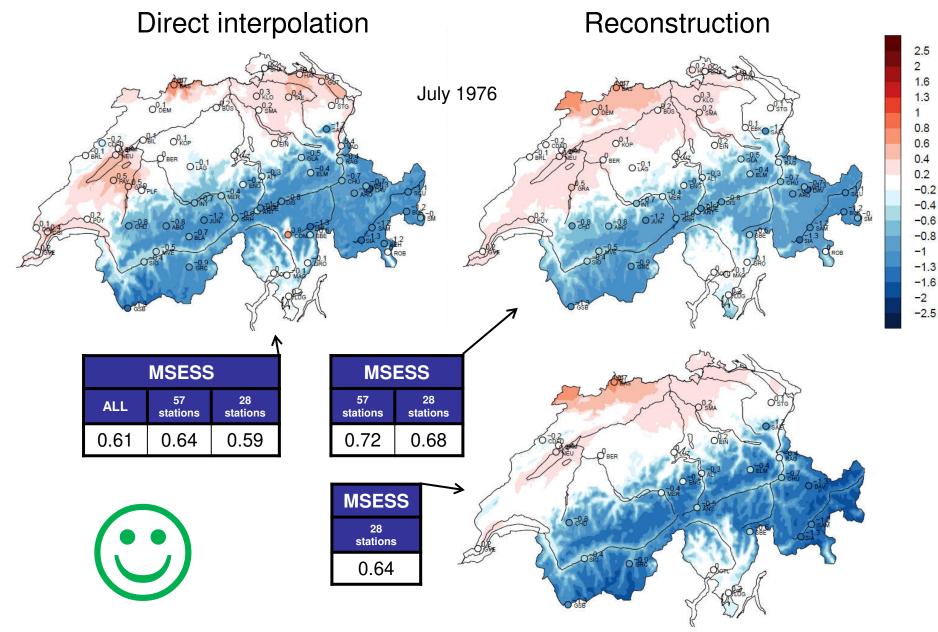
Long-term consistent grid data for temperature in Switzerland F. Isotta, M. Begert and C. Frei


RSOI – Results and evaluation

- Calibration period: 1981-2010
- Reconstruction period: 1961-2010, 1901-2010, 1864-2010
- Dimensionality reduction (truncation): 12
- Evaluation:
 - Tests with changing calibration (length and period), truncation, data quality, stations amount
 - Use of crossvalidation (leave-one-out): *x*_{*i*,*reconstr*}, *x*_{*i*,*obs*}
 - Mean absolute error (MAE)
 - Mean-Squared Error Skill Score (MSESS)
 1= perfect reconstruction, 0=no skill M.
 - Variance
 - Trend


$$MAE = \frac{1}{n} \sum_{i=1}^{n} (|x_{i,reconstr} - x_{i,obs}|)$$

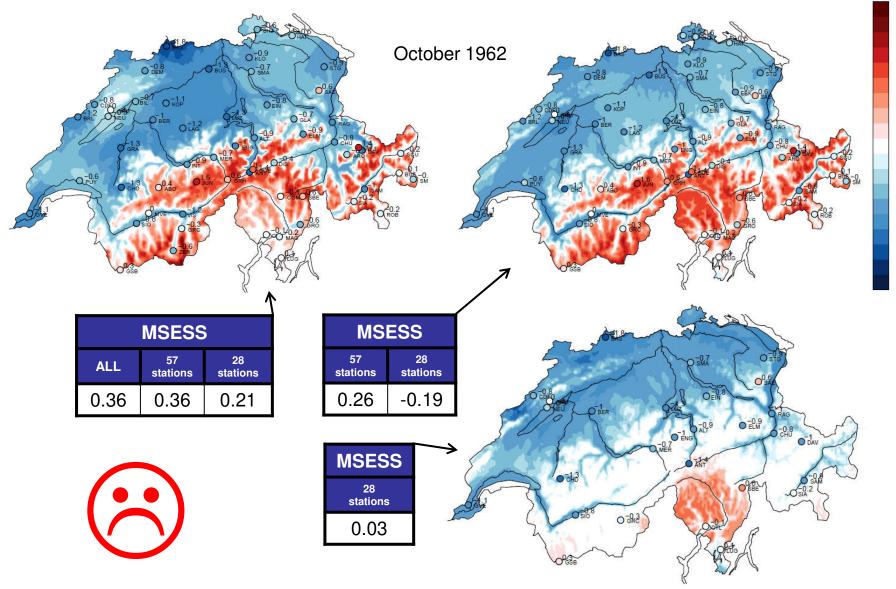
$$MSESS = 1 - \frac{\sum_{i=1}^{n} (x_{i,reconstr} - x_{i,obs})^{2}}{\sum_{i=1}^{n} (x_{i,obs} - \overline{x_{i,obs}})^{2}}$$



Reconstruction examples (anomalies 1981-2010)

Reconstrucion examples (anomalies 1981-2010)

Reconstrucion examples (anomalies 1981-2010)


Direct interpolation

Reconstruction

2.5 2 1.6

1.3 1 0.8

0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 -1 -1.3 -1.6 -2 -2.5

Mean absolute error (degC)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} (|x_{i,reconstr} - x_{i,obs}|)$$

-	_							_
t	Grid	# stat	ALL	DJF	MAM	JJA	SON	#
1961 2010	Reconstr.	57	0.26	0.35	0.22	0.19	0.27	28 stat.
	Reconstr.	28	0.27	0.36	0.23	0.20	0.27	
	Direct grid	~85	0.28	0.39	0.23	0.21	0.29	
1901 2010	Reconstr. 28		0.32	0.41	0.28	0.26	0.32	
		28	0.33	0.44	0.28	0.26	0.33	18 s
1864 2010	Reconstr.	18	0.38	0.50	0.32	0.31	0.39	stat.

Mean absolute error (degC)

$MAE = \frac{1}{n} \sum_{i=1}^{n} (x_{i,reconstr} - x_{i,obs})$

MAL -	$\overline{n}\sum_{i=1}^{n} (x_{i,reconst})$	r — xi,obs	1)	V			V	
t	Grid	# stat	ALL	DJF	MAM	JJA	SON	#
1961 2010	Reconstr.	57	0.26	0.35	0.22	0.19	0.27	
	Reconstr.	28	0.27	0.36	0.23	0.20	0.27	28 stat.
	Direct grid	~85	0.28	0.39	0.23	0.21	0.29	
1901 2010	Reconstr. 28		0.32	0.41	0.28	0.26	0.32	
		28	0.33	0.44	0.28	0.26	0.33	18 s
1864 2010	Reconstr.	18	0.38	0.50	0.32	0.31	0.39	stat.

Mean absolute error (degC)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} (|x_{i,reconstr} - x_{i,obs}|)$$

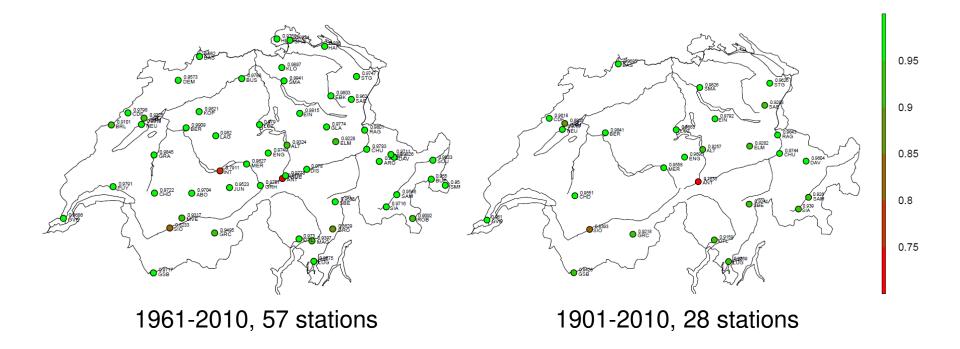
t	Grid	# stat	ALL	DJF	MAM	JJA	SON	#	
	Reconstr.	57	0.26	0.35	0.22	0.19	0.27		←
1961 2010	Reconstr.	28	0.27	0.36	0.23	0.20	0.27	28 s	←
	Direct grid	~85	0.28	0.39	0.23	0.21	0.29	stat.	←
01 10			0.32	0.41	0.28	0.26	0.32		
1901 2010	Reconstr.	28	0.33	0.44	0.28	0.26	0.33	18 s	
1864 2010	Reconstr.	18	0.38	0.50	0.32	0.31	0.39	stat.	

Mean absolute error (degC)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} (|x_{i,reconstr} - x_{i,obs}|)$$

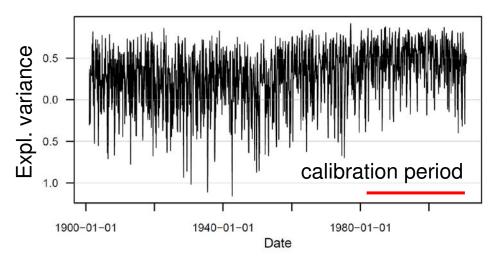
t	Grid	# stat	ALL	DJF	MAM	JJA	SON	#	
	Reconstr.	57	0.26	0.35	0.22	0.19	0.27		
1961 2010	Reconstr.	28	0.27	0.36	0.23	0.20	0.27	28 s	←
	Direct grid	~85	0.28	0.39	0.23	0.21	0.29	stat.	
01 10	_		0.32	0.41	0.28	0.26	0.32		←
1901 2010	Reconstr.	28	0.33	0.44	0.28	0.26	0.33	18 s	
1864 2010	Reconstr.	18	0.38	0.50	0.32	0.31	0.39	stat.	

Mean absolute error (degC)


$$MAE = \frac{1}{n} \sum_{i=1}^{n} (|x_{i,reconstr} - x_{i,obs}|)$$

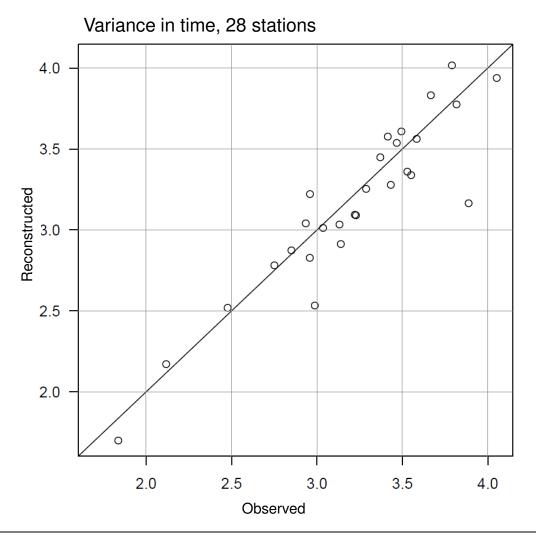
t	Grid	# stat	ALL	DJF	MAM	JJA	SON	#	
	Reconstr.	57	0.26	0.35	0.22	0.19	0.27		
1961 2010	Reconstr.	28	0.27	0.36	0.23	0.20	0.27	28 s	
	Direct grid	~85	0.28	0.39	0.23	0.21	0.29	stat.	
10			0.32	0.41	0.28	0.26	0.32		
1901 2010	Reconstr.	28	0.33	0.44	0.28	0.26	0.33	18 s	\
1864 2010	Reconstr.	18	0.38	0.50	0.32	0.31	0.39	stat.	\

Skill: MSESS 1901/1961-2010

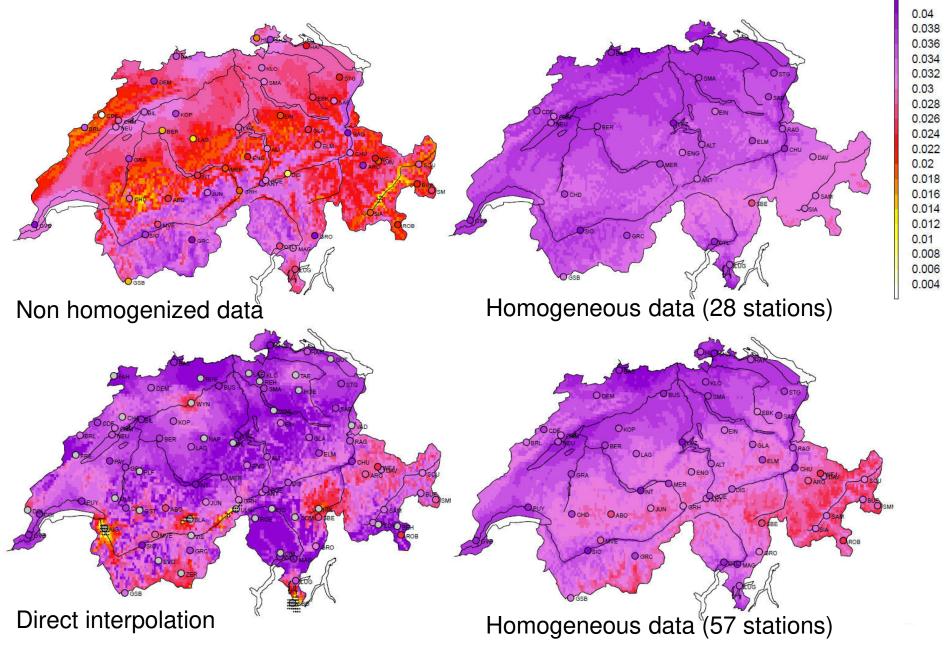

Explained temporal variance

Most of the stations have MSESS > 0.95

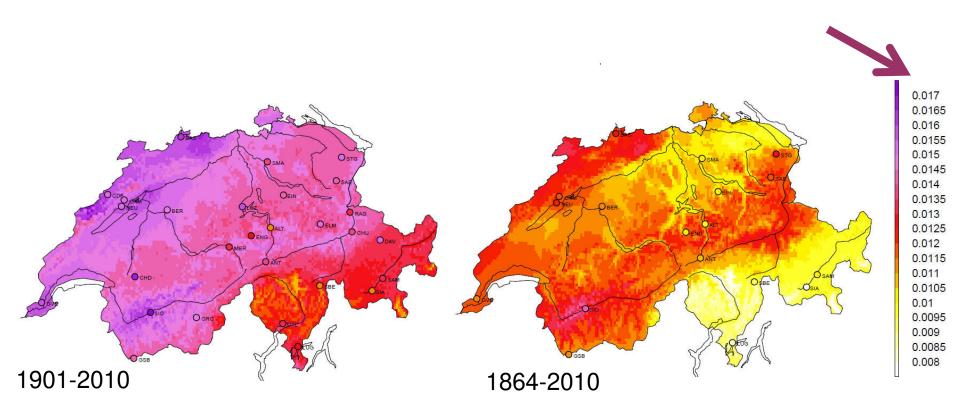
Skill: MSESS 1901-2010


Explained spatial variance

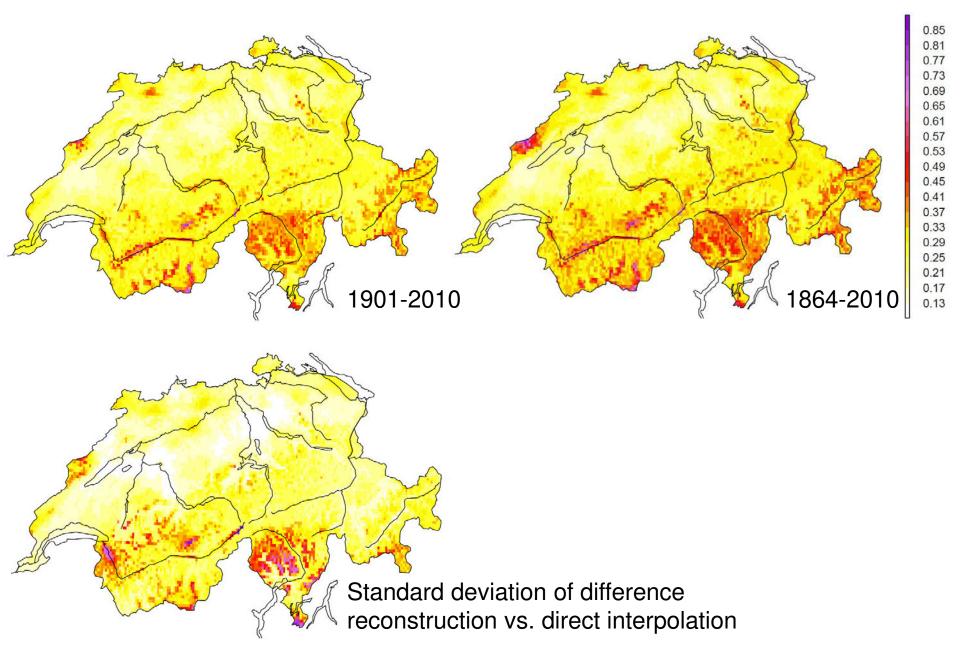
Explained variance fraction (28 stations)


MSESS	ALL	DJF	MAM	JJA	SON
Median	0.36	0.48	0.36	0.19	0.33
q0.9	0.71	0.74	0.73	0.62	0.67
q0.1	-0.20	0.08	-0.25	-0.38	-0.20

Variance 1901-2010


Trend 1961-2010

Theil-Sen trend estimate (degC/y) Stippling: statistically not significant (0.05, Mann-Kendall)



Trend 1864/1901-2010

Theil-Sen trend estimate (degC/y) Stippling: statistically not significant (0.05, Mann-Kendall)

Standard error

Introduction: motivation, method

Results and evaluation

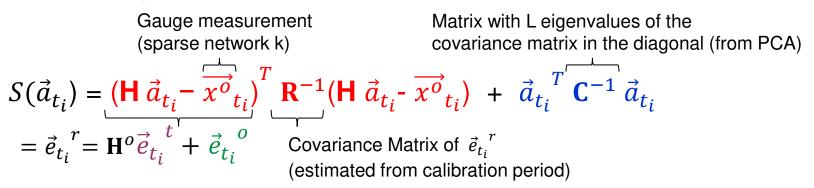
Conclusion and outlook

Long-term consistent grid data for temperature in Switzerland F. Isotta, M. Begert and C. Frei

Conclusion and outlook

RSOI method

- RSOI is an attractive method to benefit of short-term high-resolution information to reconstruct longer time scales with less observations available. Method suitable for complex terrain where variations are spatially anchored.
- Successful reconstruction of time series and spatial distribution of temperature
- The discrepancies between observations and reconstruction are relatively moderate (MAE≈0.25)
- Reconstruction improves long-term consistency

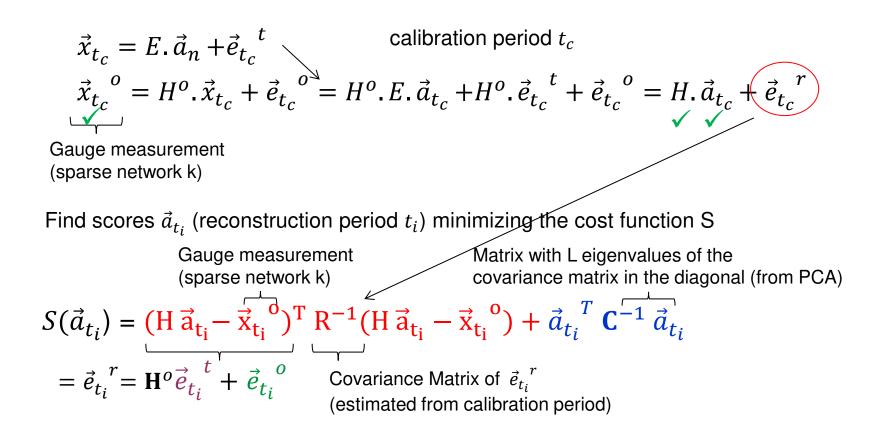

Outlook

- Additional analysis (compare with HISTALP,...)
- Develop a regularly updated climate monitoring product at MeteoSwiss
- Apply same method for precipitation fields (station homogenization ongoing)
- Potential for application in the entire Alpine Region

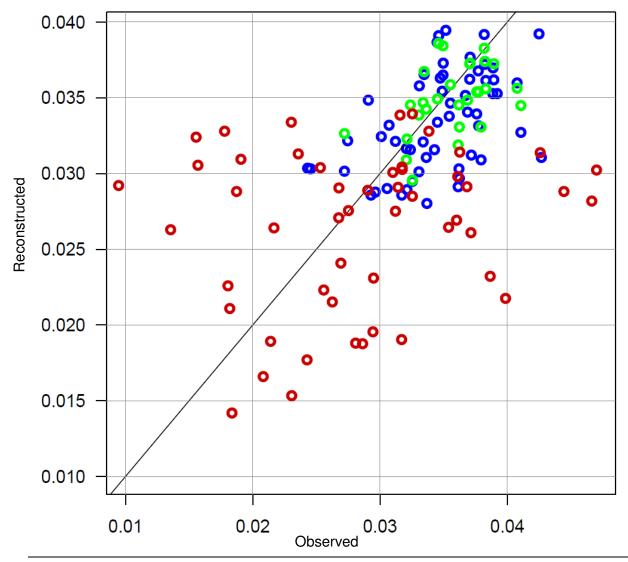
RSOI – Details

• Optimal interpolation

Find scores \vec{a}_{t_i} (reconstruction period t_i) minimizing the cost function S



Truncation error (dimension reduction)


Error due to difference between gauge measurement and grid-cell value assigned (H^o)

Guarantee balance between regions with different station density and lowers weight of highly correlated gauges. Disfavour high scores for high-order PC loadings

RSOI – Details

Trend 1961-2010 (degC/y)

Reconstruction 57 stations Reconstruction 28 stations Inhomogeneous data

Long-term consistent grid data for temperature in Switzerland F. Isotta, M. Begert and C. Frei

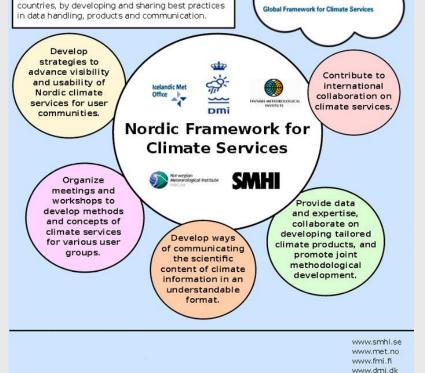
0

Norwegian Meteorological Institute

Spatial Interpolation of daily Temperature and Precipitation for the Fennoscandia

Cristian Lussana and Ole Einar Tveito⁽¹⁾

Norwegian Meteorological Institute, Oslo


30.10.2015

10th EUMETNET Data Management Workshop, St. Gallen, Switzerland, 28th – 30th October 2015

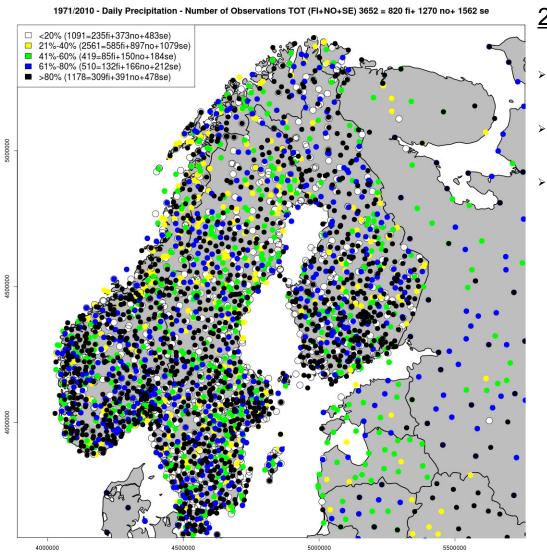
E. Löwendahl, E. Engström, R. Ruuhela, H. Tuomenvirta, E. Førland, H.T. Tilley Tajet, K.A. Iden, H. Bjornsson, C. Kern-Hansen and J. Hesselbjerg Christensen.

During 2011 a framework for Climate Services was initiated within NORDMET co-operation between the Nordic National Meteorological Services. The aim of NORDMET is to achieve better cost efficiency by sharing resources in such areas as observation, information management, production and education. The main objective for the new group Nordic Framework for Climate Services, NFCS, is to boost the availability of climate information in the Nordic

www.vedur.is

http://blog.fmi.fi/nordmet/

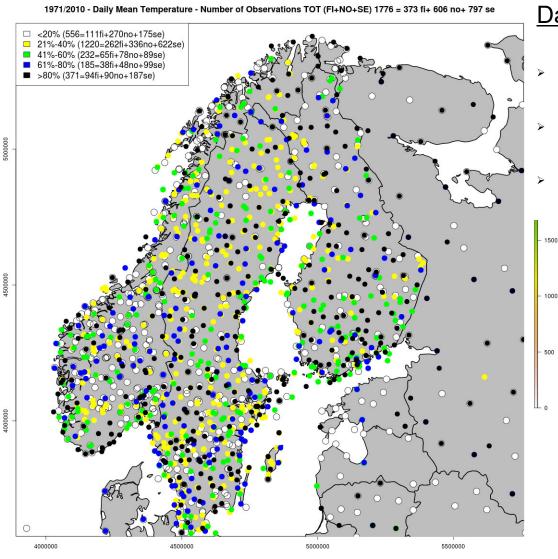
	DMET	
	Home ·	
NORDMET Nordman Nor	<text><text><section-header><list-item><list-item><section-header><section-header></section-header></section-header></list-item></list-item></section-header></text></text>	
Manual for adding content Forums EIS internal GPS node internal		


Nordic Gridded Climate Dataset NGCD

- An observation gridded dataset for temperature and precipitation covering Finland, Sweden and Norway.
 - Spatial resolution 1Km x 1Km
 - CRS: EPSG Projection 3035 ETRS89 / ETRS-LAEA
 - Temporal resolution: daily
 - Time range: 1981 2010
 - Data sources: ECA&D, eklima.met.no, SMHI, FMI
- Nordic observation gridded dataset will be an outcome of the Nordic Framework for Climate Services (SMHI, FMI, MI, (DMI,IMO))
- NGCD first versions: 2 from MET Norway, 1 from FMI and 1 from SMHI

RR – daily precipitation

European Climate Assessment & Dataset


24h PREC, Element descriptions in

- ECA&D:
- Norway: id=RR2
 - > (D-1) 06UTC -> D 06UTC;
- Sweden: id=RR9
 - > D 06UTC -> (D+1) 06UTC;
- Finland: id=RR5
 - > D 07.30 -> (D+1) 07.30UTC;

TG – daily mean temperature

Ometeorologisk institutt

European Climate Assessment & Dataset

ECA&D

- Daily mean temperature, Element descriptions in ECA&D:
- Norway: id=TG9
 - > (D-1) 6UTC->D 6UTC;
- Sweden: id=TG6
 - average using TN,TX,06,12,18;
- Finland: id=TG6
 - » average using 8 observations;

NGCD @ MET Norway

» Daily mean Temperature

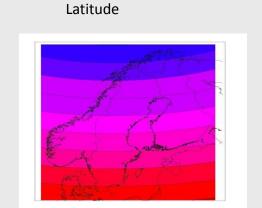
- Residual Kriging (RK)
- Optimal Interpolation (OI)

» Daily accumulated precipitation

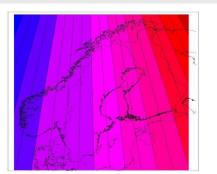
Multi-Scale Optimal Interpolation (MSOI)

Both OI products includes an *automatic data quality control procedure* (described in poster #14, *Data Quality Control of Temperature and Precipitation in-situ observations based on Spatial Interpolation*, Cristian Lussana and Ole Einar Tveito)

TEMP1d: Residual Kriging

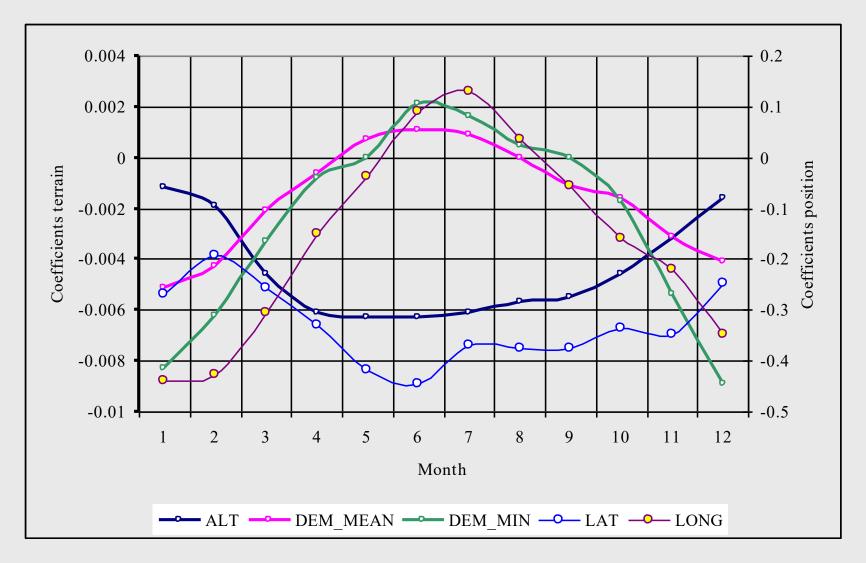

• Trend predictors:

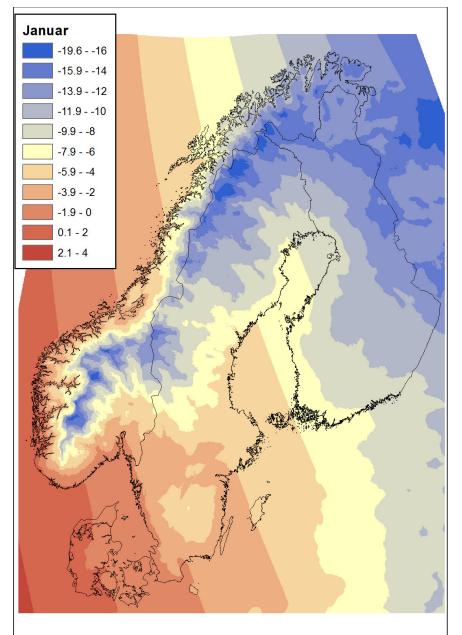
- Altitude (station)
- Mean altitude within a 20 km circle around the station
- Minimum altitude within a 20 km circle around the station
- Longitude
- Latitude

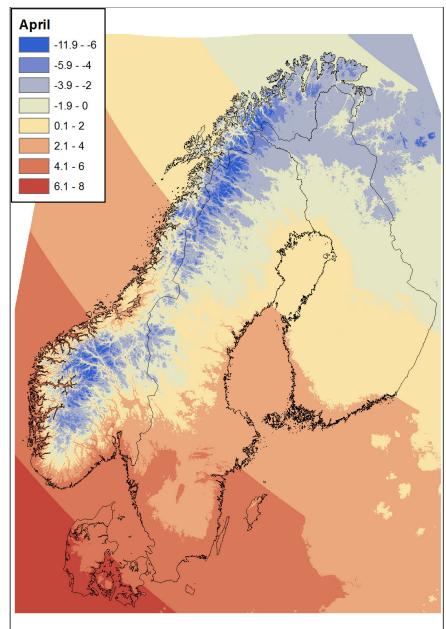

• Linear stepwise regression is used to define the trend.

Grids of the independent variables

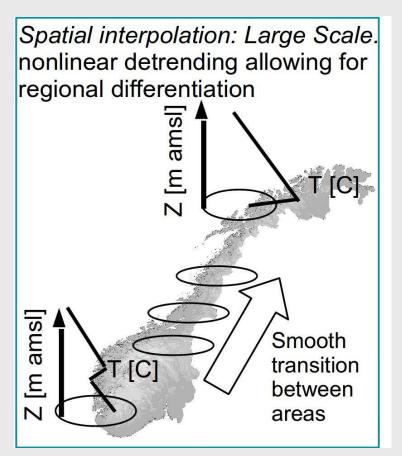
Longitude

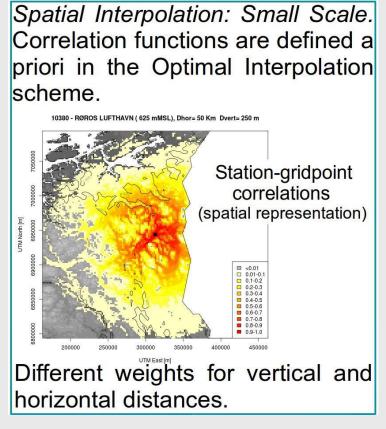



DEM_MEAN


DEM_MIN Norwegian Meteorological Institute

Regression coefficients

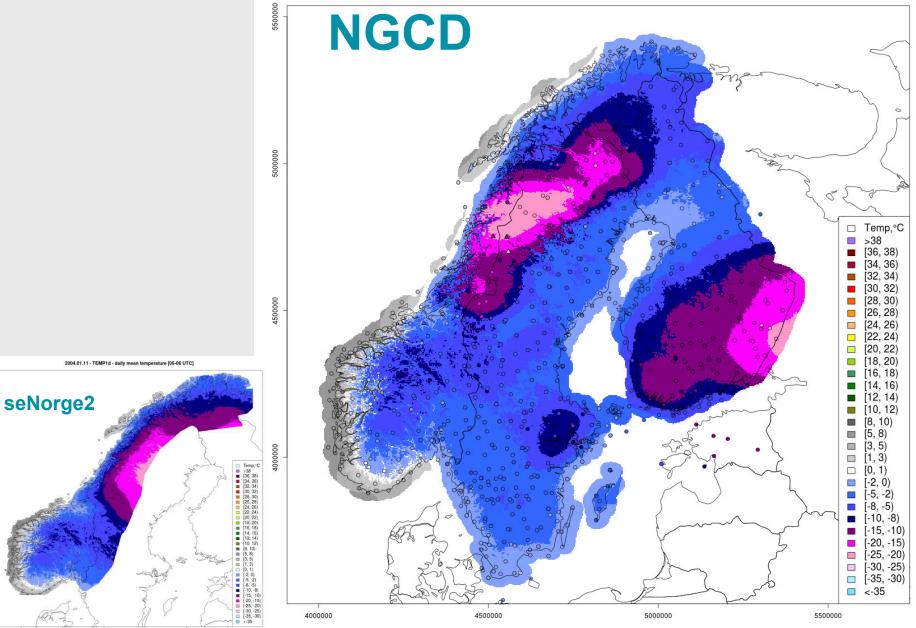




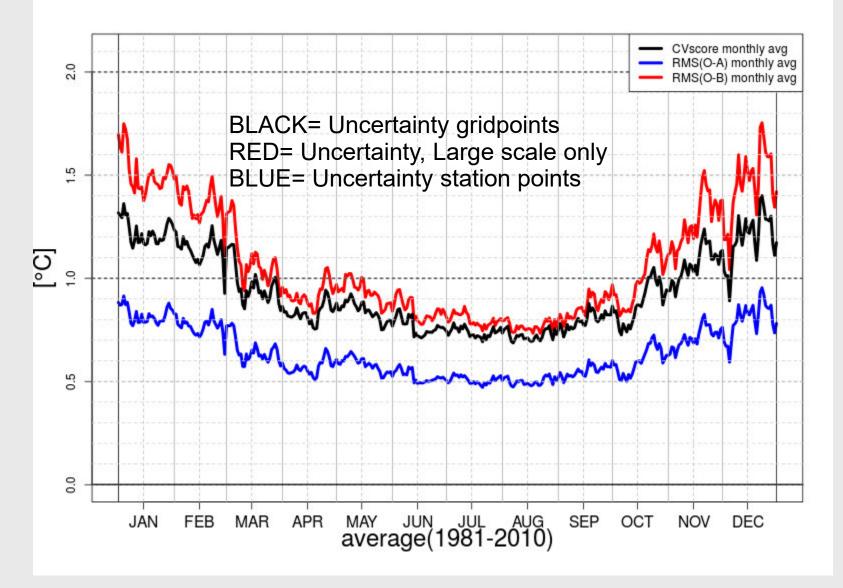
TEMP1d: OI

Large(coarser) scale trend estimation

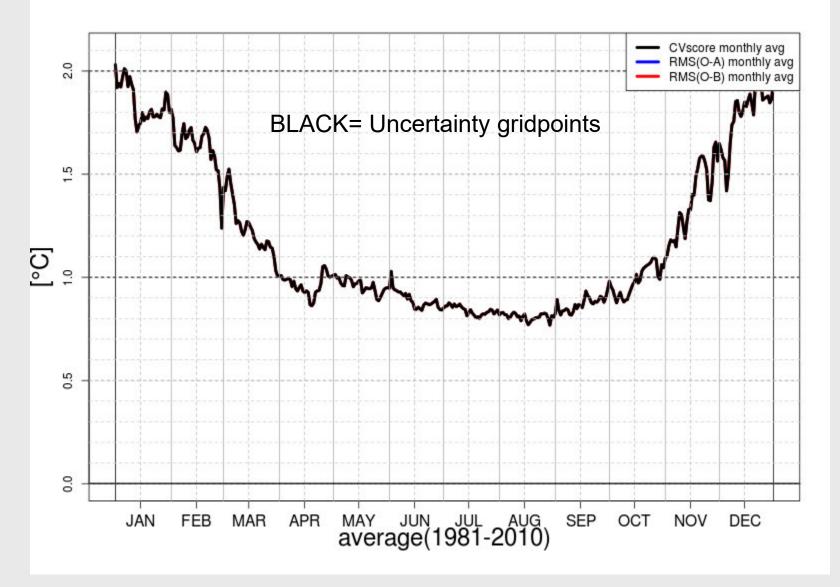
Footer text



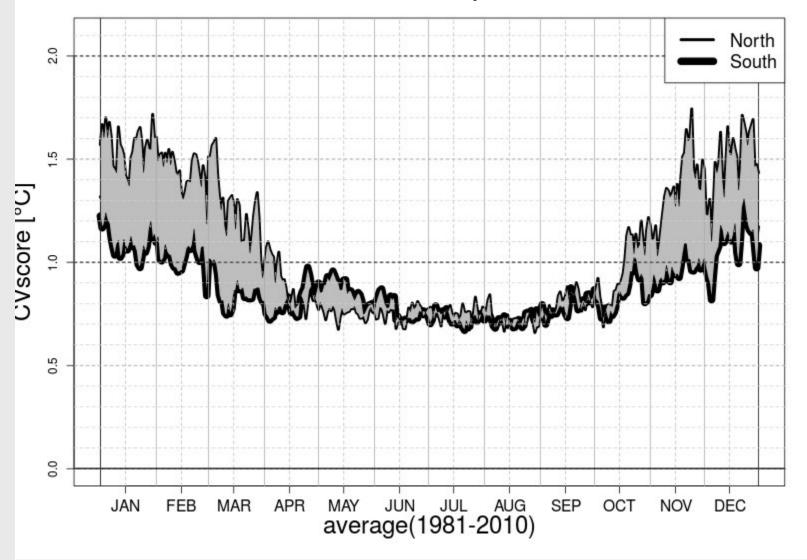
OI introduces the Local(finer) scale


Norwegian Meteorological

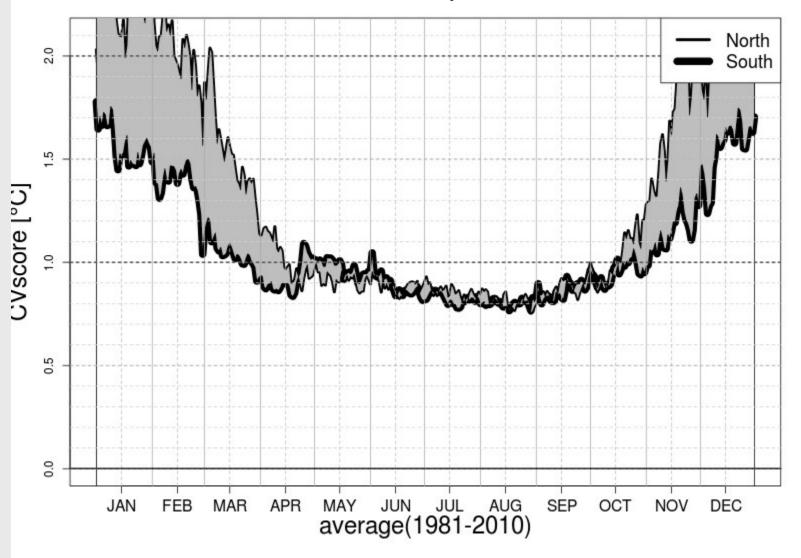
TEMP1d: OI


2004.01.11 - TEMP1d - daily mean temperature [06-06 UTC]

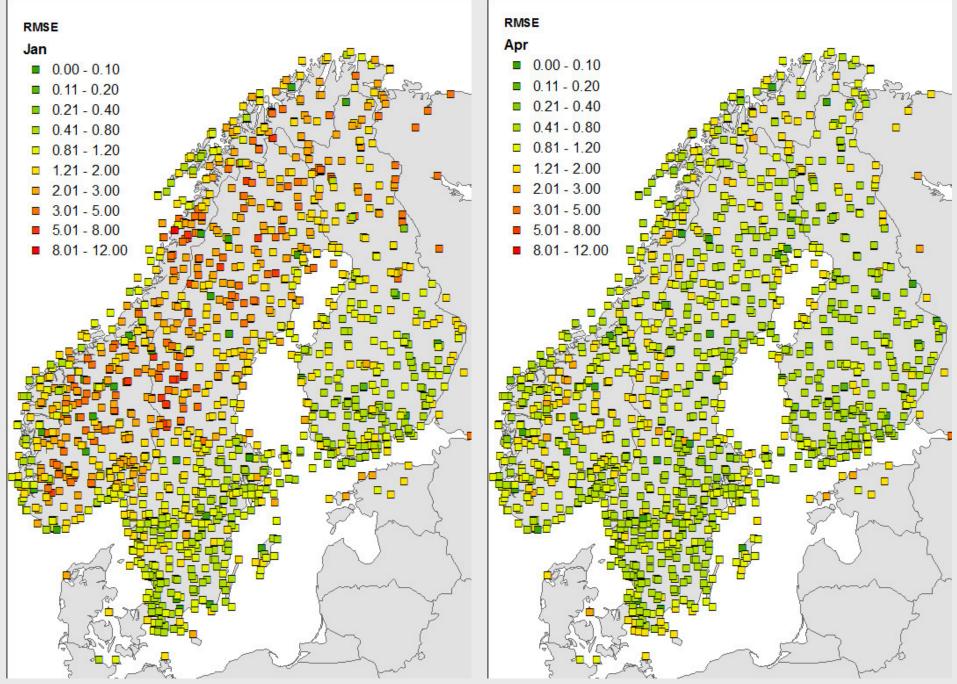
NGCD.OI @ MET Norway – TEMP1d - Evaluation



NGCD.RK @ MET Norway – TEMP1d - Evaluation

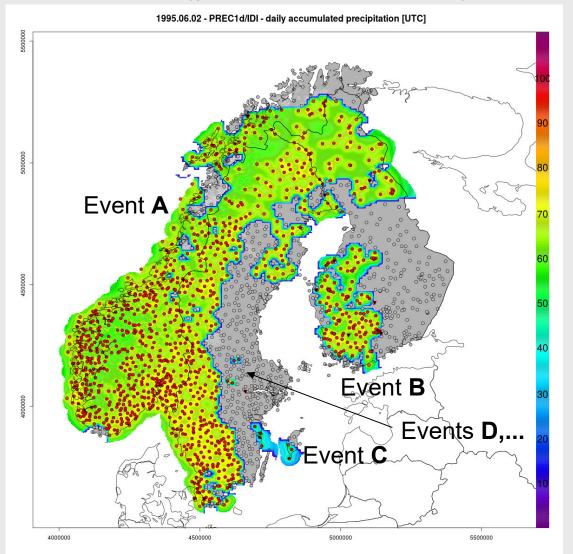

NGCD.OI @ MET Norway – TEMP1d - Evaluation

influence of station density/distribution



NGCD.RK @ MET Norway – TEMP1d - Evaluation

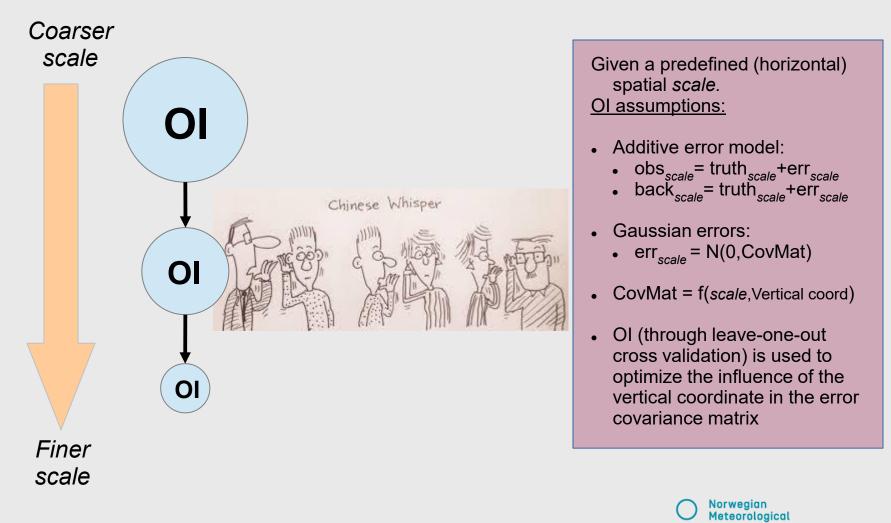
influence of station density/distribution



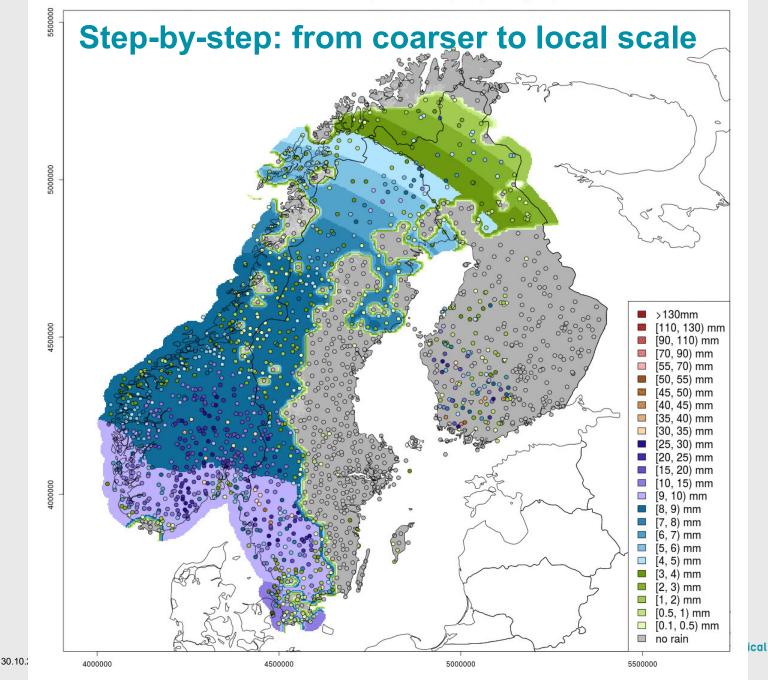
NGCD.RK @ MET Norway – TEMP1d - Evaluation

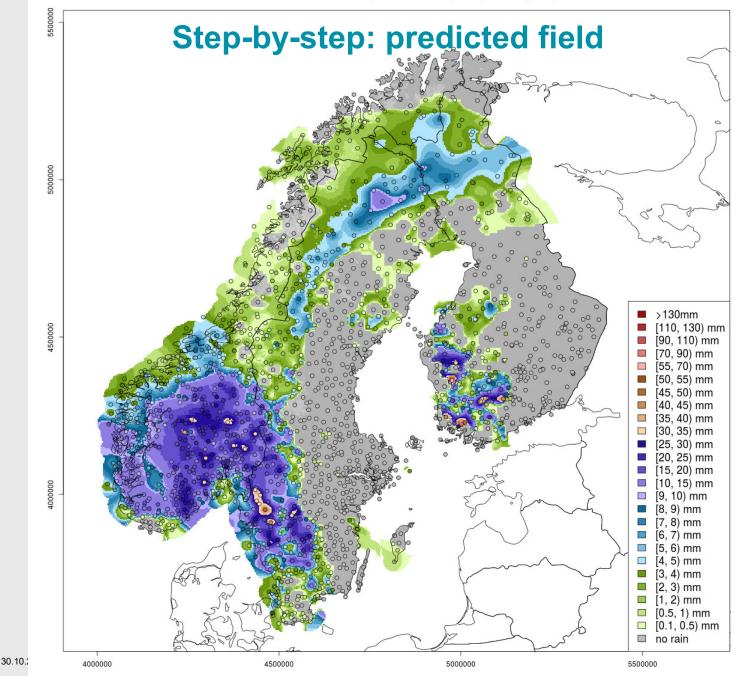
Spatial Interpolation Method based on Multi-scale Optimal Interpolation (Prec)

Step 0: Identification of Precipitation Events (Observed Areas of Precipitation) (given the Station distribution)



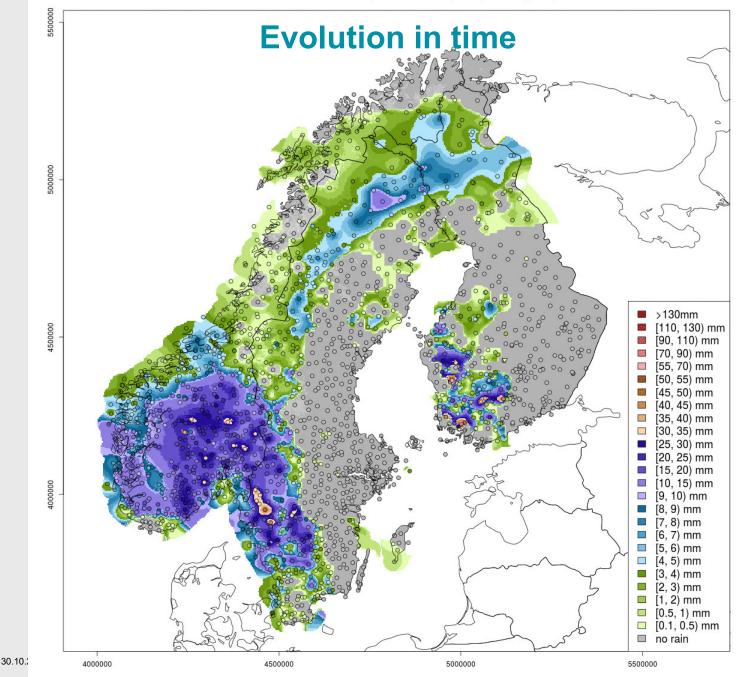
Norwegian Meteorological Institute

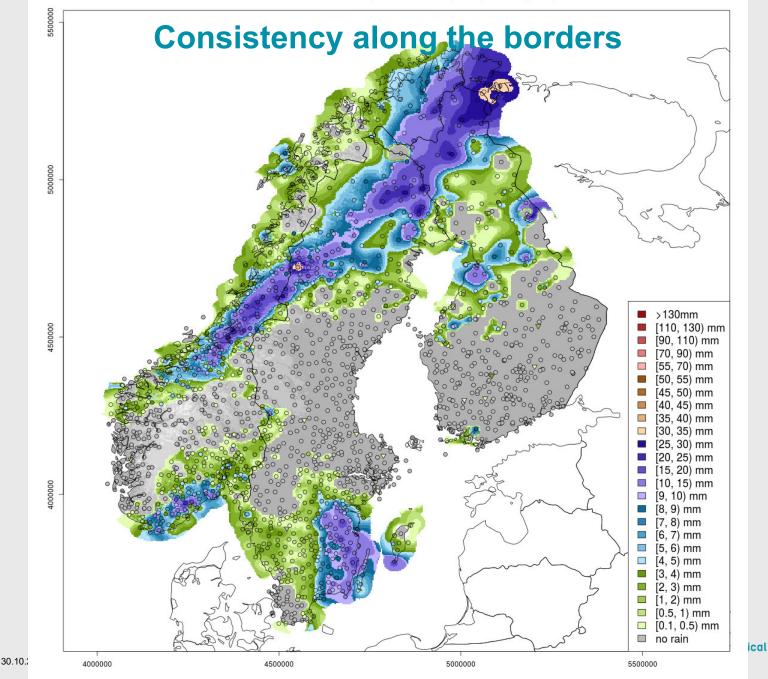

30.10.2015


Spatial Interpolation Method based on Multi-scale Optimal Interpolation (Prec)

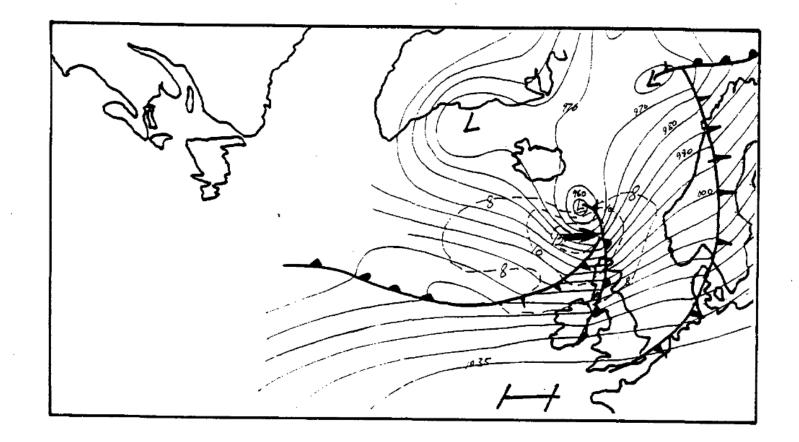
Given a single Event, the spatial interpolation is based on an *iterative* process:

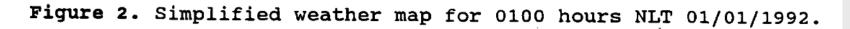
Institute




ical

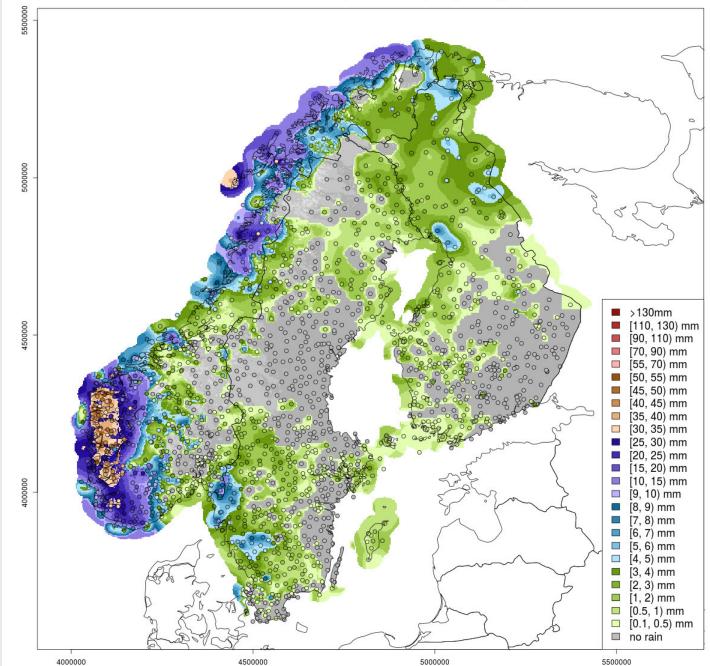
21


22

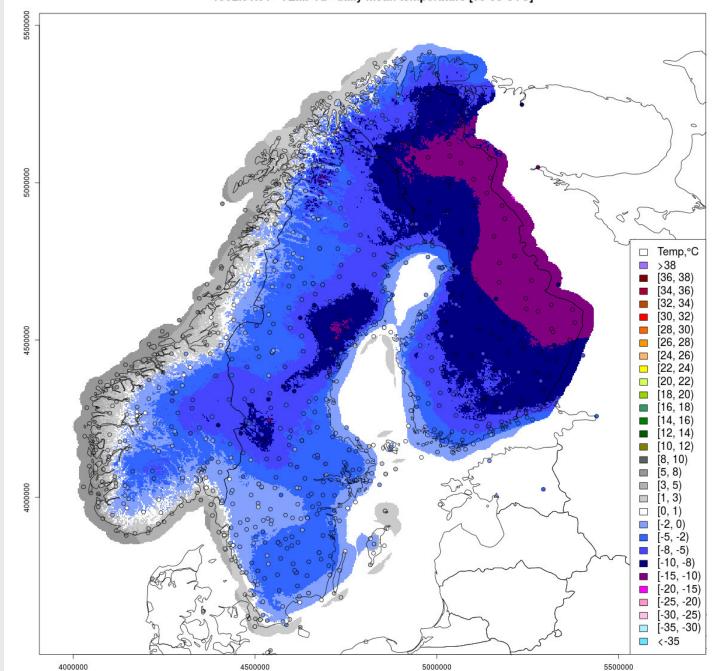


ical

Case study: the New Year's Day Storm 1992



Aune, B., and K. Harstveit. "The storm of January 1st 1992." DNMI Rapport NR 23 (1992): 92.


25

30.10.2015

30.10.2015

Summary

Within the NFCS, NORDGRID activity, we're establishing several observation-based gridded dataset of **daily precipitation** and **temperature** for the Fennoscandia region covering the period 1981-2010.

Given the station distribution we expect to correctly describe the TEMP/PREC state down to the **meso-beta scale** (20-200Km).

Bayesian/Residual Kriging spatial interpolation of precipitation and temperature show encouraging results.

- Temp: on the average, Temperature analysis uncertainty is estimated to be between 0.6 ℃ in the summer and 1.5 ℃ in the winter.
- Prec: Visual inspection of precipitation fields show realistic feature. Quantitative evaluation needed.

10th EUMETNET Data Management Workshop St. Gallen, Switzerland 28th – 30th October 2015

1

MAPPING MINIMUM DAILY TEMPERATURE IN SPAIN USING KRIGING WITH EXTERNAL DRIFT

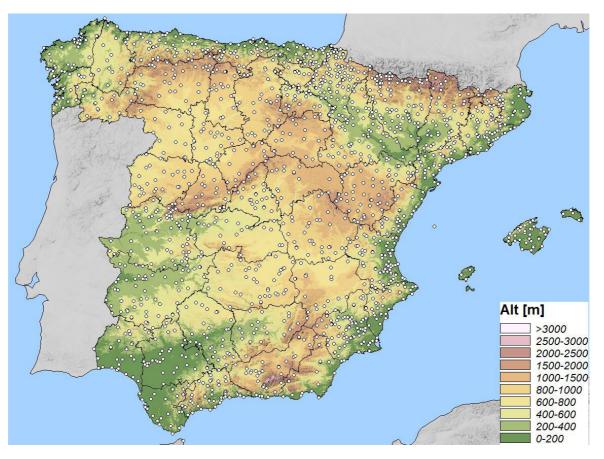
Andrés CHAZARRA, José Vicente MORENO, Roser BOTEY

Agencia Estatal de Meteorología (AEMET)

achazarrab@aemet.es

Introduction

• The objective is to describe the methodology that has been applied in the Spanish Meteorological Agency (AEMET) for obtaining **high-resolution** gridded fields of daily minimum temperature in Spain.

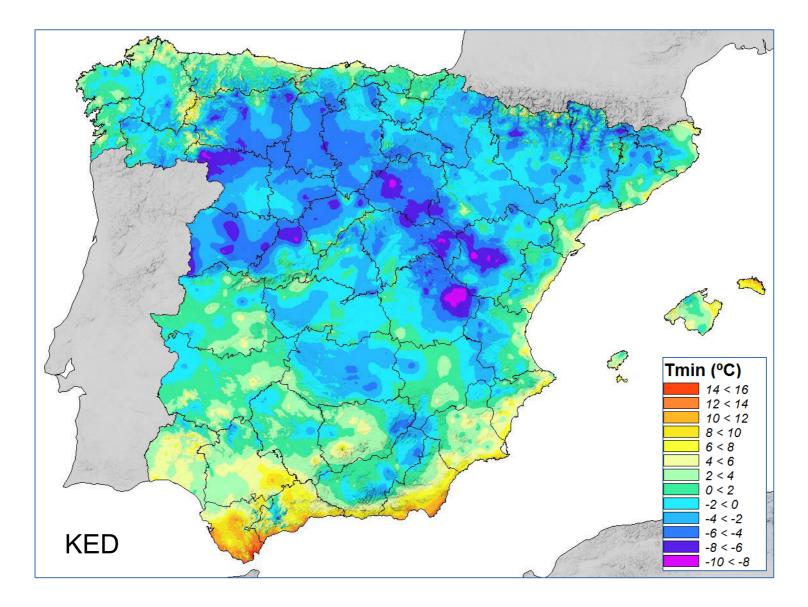

• This project began in 2013 when AEMET was requested to generate highresolution gridded fields of daily minimum temperature for **agricultural applications** for the period **2002-2013**. • Spatial interpolation of daily temperature data \rightarrow a more complex problem than the case of monthly or annual mean temperature data. Very often we have to deal with temperature inversions and other local phenomena, specially in mountainous regions.

• Mountainous regions are often **data-sparse** in Spain \rightarrow it is necessary to consider **external variables**, such as the elevation, in the spatial interpolation process.

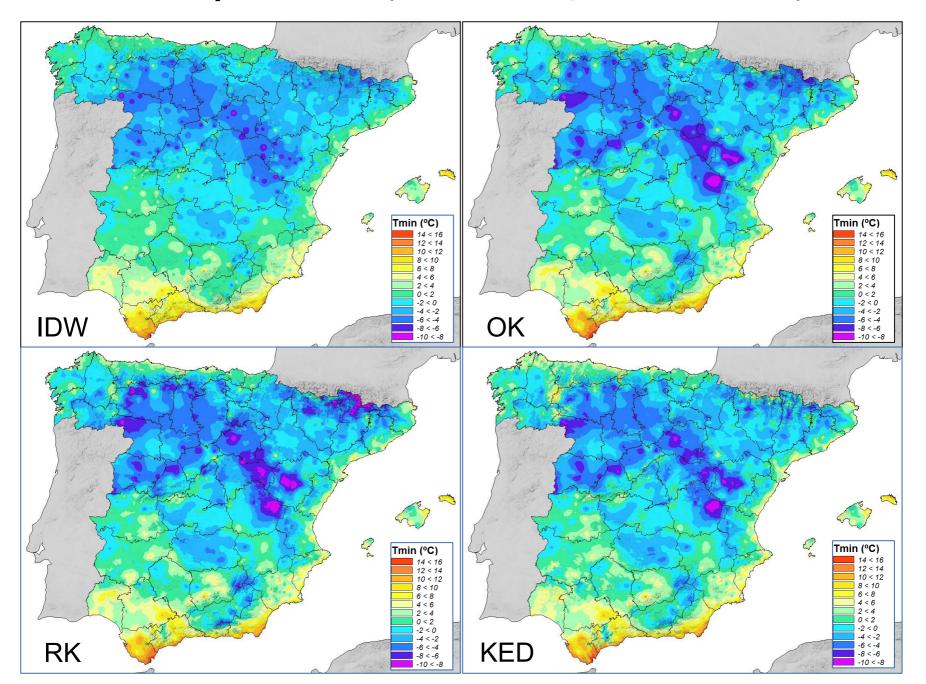
 After trying several spatial interpolation methods, kriging with external drift with elevation and distance to the coast as external variables was chosen.

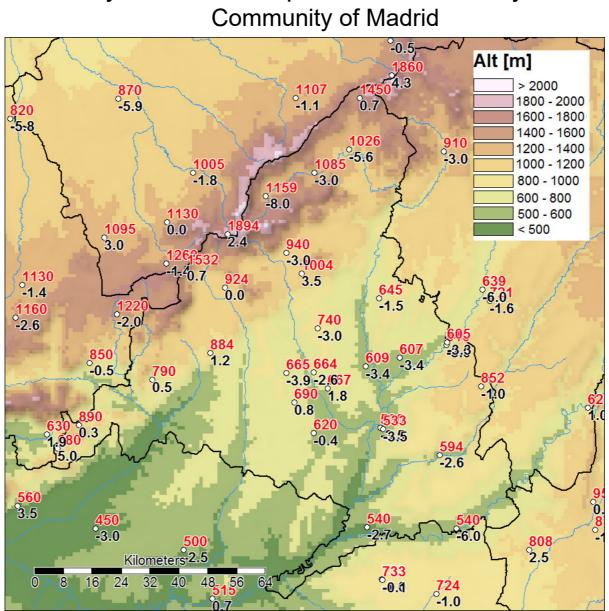
Methodology

- Data: daily temperature data from Spain not including the Canary Islands
- from the twelve-year period 2002-2013.

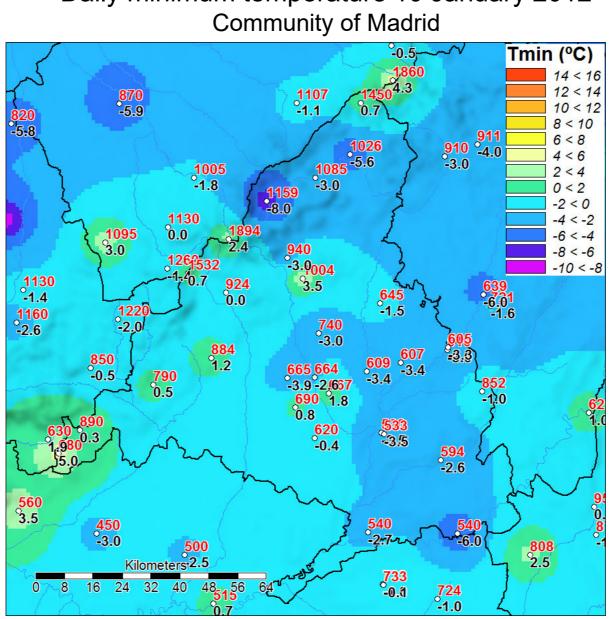

Study area and location of the stations (~ 1700 stations)

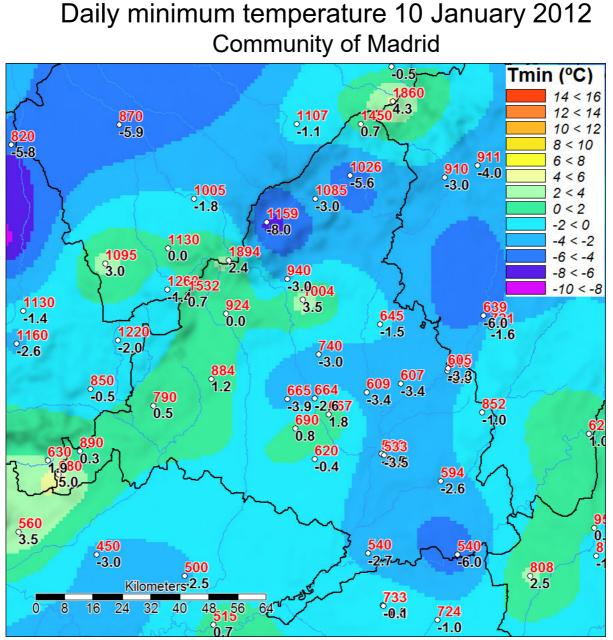
• **Spatial interpolation method**: Kriging With External Drift (KED) with elevation and distance to the coast as external variables. Exponential semivariogram model.

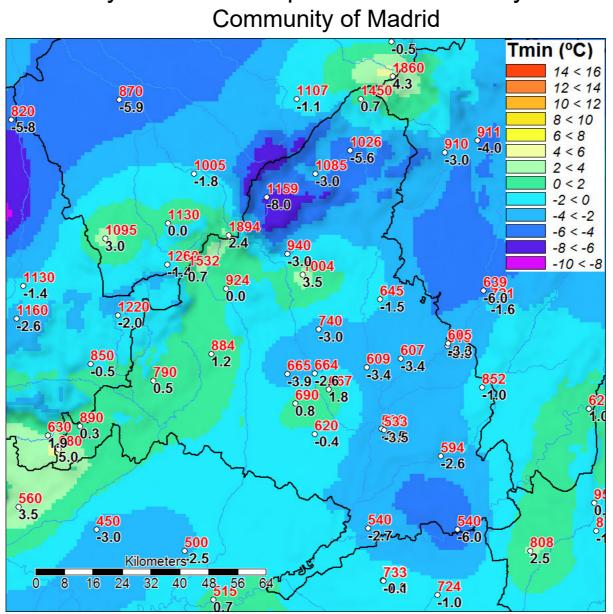

- Other spatial interpolation methods for comparison:
 - Inverse Distance Weighted (IDW).
 - Ordinary Kriging (OK).
 - Regression Kriging (RK) with elevation and distance to the coast.
- Cell size: 1x1 km.
- **Software**: free open source SAGA GIS.

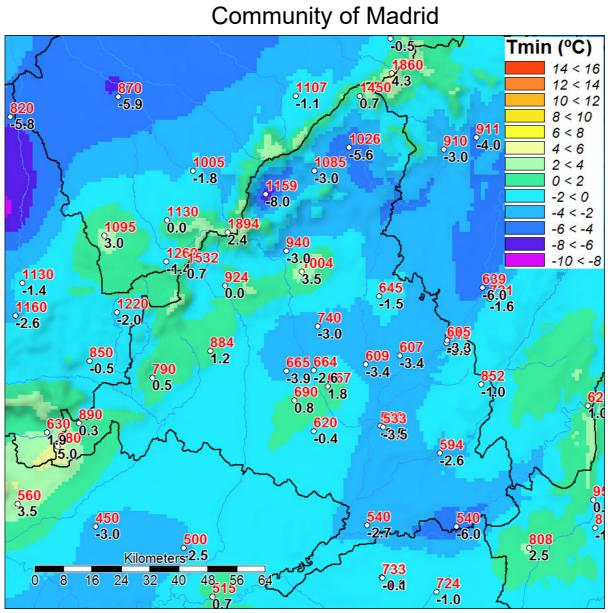

 365x12+3= 4383 gridded fields of daily minimum temperature were created by KED

Example: daily minimum temperature 10 January 2012


Visual comparison: daily minimum temperature 10 January 2012


Daily minimum temperature 10 January 2012


Minimum temperature data (black) and altitude of the stations (red)

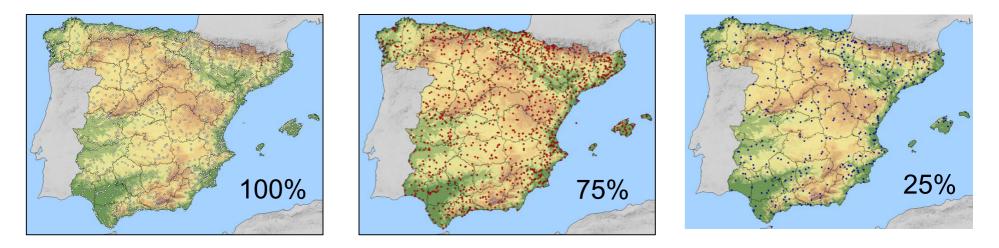

Daily minimum temperature 10 January 2012

IDW

Daily minimum temperature 10 January 2012

Daily minimum temperature 10 January 2012 Community of Madrid

KED


• From a **visual analysis**, we can see that the differences between the methods are generally **small in plain areas**.

 KED provides better looking interpolations in mountainous regions with high enough data density, as it is able to model properly local temperature inversions.

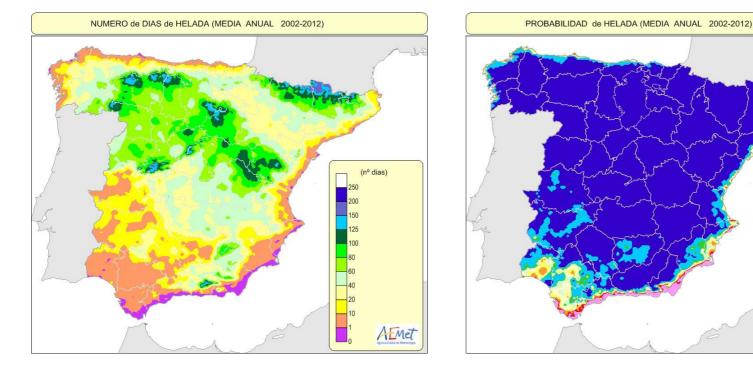
 However, we have detected that KED can lead to some exaggerated extrapolation effects in areas with scarce and anomalous data at the same time.

Validation

• A validation process was made by taking apart 25% of the data and repeating the process with the 75% remaining data **for every day of the year 2012** (366 days).

• The mean absolute error (MAE), the root mean square error (RMSE) and the correlation coefficient (R) between the observed and predicted values were used to measure the skill of the interpolation methods.

	R	MAE (°C)	RMSE (°C)
IDW	0.859	1.424	1.468
KO	0.858	1.437	1.480
RK	0.858	1.441	1.483
KED	0.865	1.402	1.444

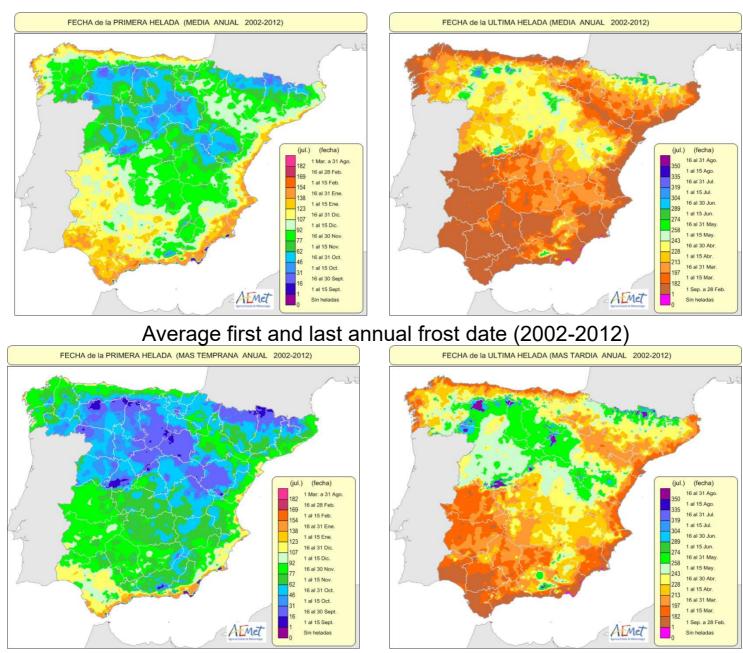

R = Pearson correlation coefficient MAE = Mean absolute error RMSE = Root mean square error

• **KED provides the best estimations** for the minimum daily temperature, although the differences with the other methods are small when considering the whole study area.

• However, the differences between KED and the other methods **would be** greater if only mountainous regions were considered in the validation.

Some examples of derived products

• Several map products have been generated for agroclimatological purposes by **combining daily gridded temperature fields** from the period 2002-2012



Mean annual number of frost days (2002-2012)

Mean annual probability of reaching temperatures below 0°C (2002-2012)

(porcentaie

AEMet

First and last frost date recorded on the period 2002-2012

Conclusions

 Kriging with External Drift with altitude and distance to the coast as external variables has been proved to be an appropriate method for obtaining gridded fields of daily minimum temperature data in Spain.

 However, it must be considered that this method can lead to exaggerated extrapolation effects in areas with scarce and anomalous data at the same time.

• The same method has been also applied successfully to daily maximum temperature data.

• We are currently generating gridded fields of daily minimum and maximum temperature over a longer period of time (1981-2015)

Thank you for your attention!

References

• Agencia Estatal de Meteorología and Instituto de Meteorología de Portugal (2011). *Atlas Climático Ibérico. Agencia Estatal de Meteorología*. Ministerio de Agricultura, Alimentación y Medio Ambiente.

• Agencia Estatal de Meteorología and Instituto de Meteorología de Portugal (2012). *Atlas Climático de los Archipiélagos de Canarias, Madeira y Azores*. Agencia Estatal de Meteorología. Ministerio de Agricultura, Alimentación y Medio Ambiente.

• Barry, R.G. (2008). *Mountain Weather and Climate*. Cambridge University Press, Cambridge, UK.

• Benavides, R., Montes, F., Rubio, A. and Osoro, K. (2007). *Geostatistical modelling of air temperature in mountainous region of northern Spain*. Agricultural & Forest Meteorology 146: 173-188.

• Chazarra, A. (2014). *Interpolación especial de la temperatura minima diaria mediante krigeado universal.* XXXIII Jornadas Científicas de la AME, Oviedo. Asociación Meteorológica Española.

• Dodson, R. and Marks, D. (1997). *Daily air temperature interpolated at high spatial resolution over a large mountainous region*. Journal: Climate Research, vol. 8, pp. 1-20.

- Eskelson, B.N.I., Anderson, P.D., Hagar, J.C. and Temesgen, H. (2011). *Geostatistical modeling of riparian forest microclimate and its implications for sampling*. Canadian Journal of Forest Research 41:974-985
- Goovaerts, P. (1997). Geostatistics for Natural Resources. Oxford University Press.
- Jabot, E., Zin, I., Lebel, T., Gautheron, A. and Obled, C. (2012). *Spatial interpolation of sub-daily air temperatures for snow and hydrologic applications in mesoscale Alpine catchments*. Hydrol. Process., 26: 2618–2630. doi: 10.1002/hyp.9423
- Hudson, G. and Wackernagel, H. (1994). *Mapping temperature using kriging with external drift: Theory and an example from Scotland*. Int. J. Climatol., 14: 77–91. doi: 10.1002/joc.3370140107
- Majani, B.S. (2007). *Analysis of external drift kriging algorithm with application to precipitation in complex orography*. International Institute for Geo-Information Science and Earth Observation Enschede, The Netherlands.
- Martínez, L., Moreno, J.V., Chazarra, A., Gallego, T., Avello, M.E. and Botey, R. (2015). *Mapas de riesgo: heladas y horas frío en la España Peninsular (periodo 2002-2012)*. Agencia Estatal de Meteorología.

PREPARING CLIMATE INDICATORS TO ASSESS THE IMPACT OF EXTREME WEATHER EVENTS ON CRITICAL INFRASTRUCTURES AND ON TOURISM IN HUNGARY

Mónika Lakatos, lakatos.m@met.hu, Hungarian Meteorological Service (OMSZ)

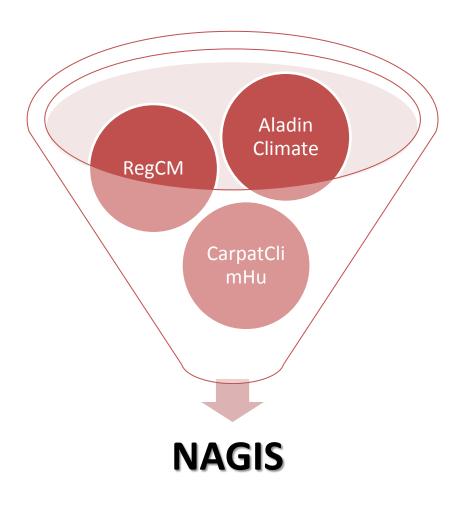
Thanks for contribution to Annamária Marton, Tamás Kovács, Tamás Szentimrey

10th EUMETNET Data Management Workshop - "High quality climate data – the foundation of Climate Services, St. Gallen, Switzerland, 28-30 October, 2015

- 2009-2014 Programme of EEA: Programme for Adaptation to climate change in Hungary - National Adaptation Geo-information System (NAGIS) in Hungary (see poster 43)
- NAGIS: Homogenized gridded dataset from meteorological observations for 1961–2010 and climate projections for 2021– 2050 and 2071–2100
- Extension of the NAGIS for further sectors: KRITéR- CRIGiS project: Vulnerability/Impact Studies with a focus on Tourism and Critical Infrastructures
- For targeted and sustainable adaptation high quality climate information is needed

Objectives

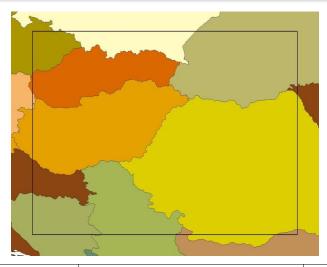
eea grants KRITéR

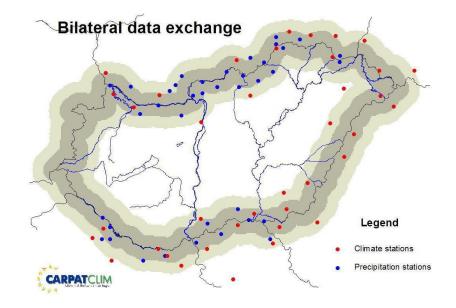

- The KRITéR- CRIGiS project is focusing (i) heatwave-induced excess mortality, impacts of (ii) extreme weather events on road accidents, and (iii) of climatic conditions on tourism
- Identification of climate indicators to assess the impact of (ii) extreme weather events on road accidents in winter (iii) of climatic conditions on tourism
- Results for observational dataset

National Adaptation Geoinformation System (NAGIS)

Observations: 1961-2010 CarpatClimHu daily grids spatial resolution: 0.1° several basic meteorological variables and climate indicators

Regional Climate model simulations: 2021–2050: "short-term" planning and 2071–2100: longterm strategy


CarpatClim project


Homogenized and griddded by MASH and MISH

CarpatClim - CarpatClimHu

Variable	Description	units
Та	2 m mean daily air	°C
	temperature	
Tmin	Minimum air temperature	°C
Tmax	Maximum air temperature	°C
р	Accumulated total	mm
	precipitation	
DD	10 m wind direction, Degrees	0-360
VV	10 m horizontal wind speed	m/s
Sunshine	Sunshine duration	hours
сс	Cloud cover	tenths
Rglobal	Global radiation	J/cm^2
RH	Relative humidity	%
pvapour	Surface vapour pressure	hPa
pair	Surface air pressure	hPa
Snow depth	Snow depth (ZAMG model)	cm

68 climate stations

IDENTIFICATION OF CLIMATE INDICATORS TO ASSESS THE IMPACT OF SEVERE WEATHER ON PUBLIC ROAD ACCIDENTS IN WINTER

Cooperation with Disaster Management – accidents statistics 2011-2014

severe winter

weather parameters

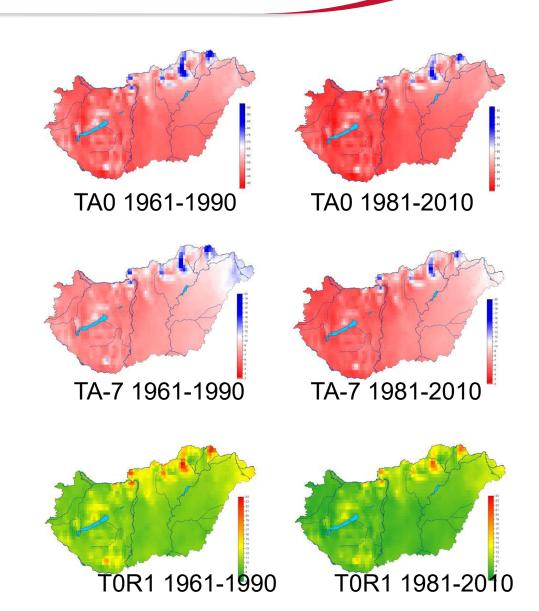
		•	
ΗI	lter	ing	5.
		c	•

_	54 Dudupest Min.
Blizzard, wind, fog, i	95 Lenti icy roads,
snowy, slippery roa	d, strong
wind, snowfall, poo	-
amounts of snow	375 Nagypáli 369 Hódmezővásárhely 399 Székesfehérvár
Daily weather	
Literature	426 Budapest XXII.455 Csurgó
	390 Acsád

Media reports

Recent project results Göt EWENT, RAIN Warning practices

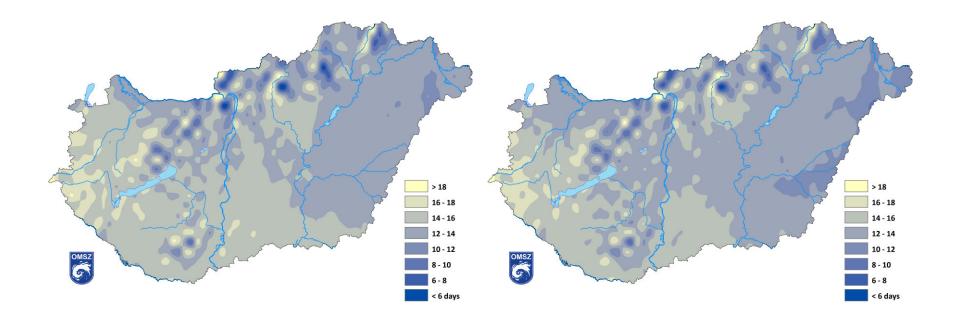
ters							
TMIV Település	Esemény típusa	EOV X	EOV Y	Észlelés dátuma	Helyszín	Káreset fajtája	Megjegyzés
8 Jászberény	Műszaki mentés	240053	712356	2012-01-01 00:10:00.000	Közút	Közúti baleset	A helyszínen, egy szgk. az út i
12 Orosháza	Műszaki mentés	138376	774506	2012-01-01 00:38:00.000	Közút	Közúti baleset	A jelzett helyen egy wartburg
30 Budapest XVIII.	Műszaki mentés	232404	659607	2012-01-01 01:24:00.000	Közút	Közúti baleset	A jhen szgk.(KOzma Zoltán :
34 Budapest XIX.	Tűzeset	234192	656013	2012-01-01 01:29:00.000	Közút	NULL	A jhen buszmegállóban sár
95 Lenti	Műszaki mentés	145956	458605	2012-01-01 09:51:00.000	Közút	Közúti baleset	A jelzett helyen egy Peugeot
icy roads,	Műszaki mentés	188428	639703	2012-01-01 02:01:00.000	Közút	Közúti baleset	A jelzett helyen egy VW Polo
304 Domony	Műszaki mentés	256972	678527	2012-01-03 11:00:00.000	Közút	Közúti baleset	Jh.SUZUKI SWIFT tip. szgk. (fr.
ad, strong	Műszaki mentés	85411	668434	2012-01-03 11:53:00.000	Közút	Közúti baleset	A jelzett helyen két személya
330 Horvátzsidány	Műszaki mentés	231602	466153	2012-01-03 16:10:00.000	Közút	Közúti baleset	A jelzett helyen egy Suzuki S
or ³⁷ /iction lar	Műszaki mentés	262988	465730	2012-01-03 17:02:00.000	Közút	Egyéb	A jelzett helyen egy MAN típi
or vision, lar	S Szaki mentés	254303	634754	2012-01-03 21:36:00.000	Közút	Közúti baleset	A jelzett helyen egy opel om
375 Nagypáli	Műszaki mentés	176201	482729	2012-01-04 07:01:00.000	Közút	Közúti baleset	A jelzett helyen egy, Renault
369 Hódmezővásárhely	Műszaki mentés	114558	757211	2012-01-04 00:20:00.000	Közút	Közúti baleset	Jelzett helyen egy Toyota Co
399 Székesfehérvár	Műszaki mentés	205771	608802	2012-01-04 10:19:00.000	Közút	Közúti baleset	A jelzett helyen egy Chevrole
r Ronorte	Műszaki mentés	172979	482147	2012-01-04 08:00:00.000	Közút	Közúti baleset	EGERSZEG/1, EGERSZEG/2, EG
r reports	Műszaki mentés	223264	733000	2012-01-04 08:13:00.000	Közút	Közúti baleset	A helyszínen egy Skoda Fabia
426 Budapest XXII.	Műszaki mentés	231405	648178	2012-01-04 13:16:00.000	Közút	Közúti baleset	Jelzett helyen Citroen Saxo ti
455 Csurgó	Műszaki mentés	102088	500253	2012-01-04 17:12:00.000	Közút	Közúti baleset	A jelzett helyen egy Opel Ast
390 Acsád	Műszaki mentés	226037	476638	2012-01-04 08:26:00.000	Közút	Közúti baleset	A jelzett helyen egy Renault
391 Iharosberény	Műszaki mentés	115776	502263	2012-01-04 09:34:00.000	Közút	Közúti baleset	A helyszínen egy SUZUKI SWI
414 Mihályi	Műszaki mentés	242288	501943	2012-01-04 12:35:00.000	Közút	Közúti baleset	A jelzet helyen egy Fiat Punte
430 Balmazújváros	Műszaki mentés	250980	831163	2012-01-04 13:50:00.000	Közút	Veszélyes anyagok	A jelzett helyen, 3316-os út 3
	Műszaki mentés	260503	658556	2012-01-04 14:40:00.000	Közút	Közúti baleset	A helyszínen a EBL-612 frszú
	Műszaki mentés	292732	822719	2012-01-04 15:56:00.000	Közút	Közúti baleset	A jelzett helyen egy KKG-174
454 Székesfehérvár	Műszaki mentés	201522	599487	2012-01-04 17:21:00.000	Közút	Közúti baleset	A jelzett helyen Ford Fiesta f
#### Debrecen	Műszaki mentés	246236	849123	2012-05-03 15:00:00.000	Közút	Közúti baleset	Jelzett helyen Szlovák forgalı
490 Tiszavasvári	Műszaki mentés	289032	817431	2012-01-05 04:45:00.000	Közút	Közúti baleset	A jelzett helyen egy VW Tran
494 Kaposvár	Műszaki mentés	117861	554601	2012-01-05 07:20:00.000	Közút	Közúti baleset	Toponár és Kaposfüred közti



Indicators for sever winter weather situations

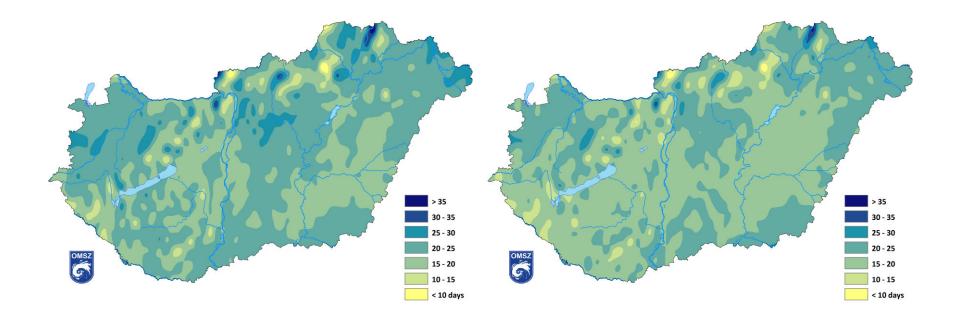
TA0: Tmean ≤ 0 °C TA-7 Tmean ≤ -7 °C

TOR1: Tmean ≤ 0 °C and Prec ≥ 1mm


Monthly, sesonal and winter half year

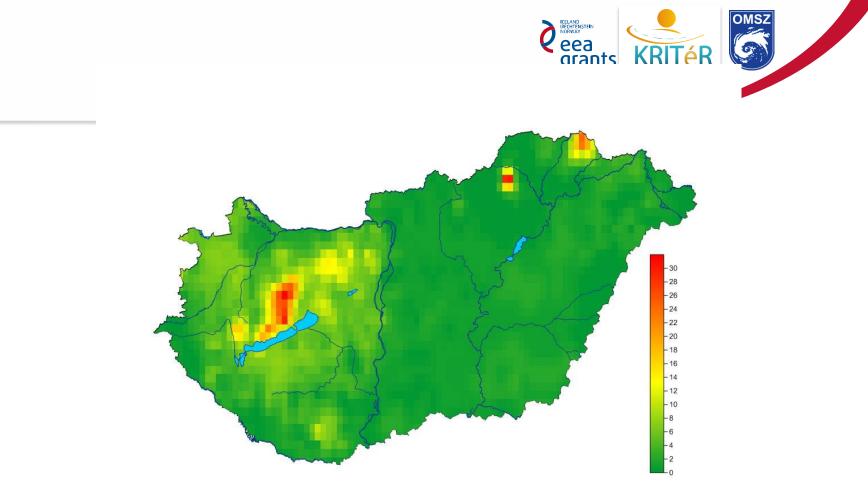
Zero crossing days

ZC-JAN, 1961-1990

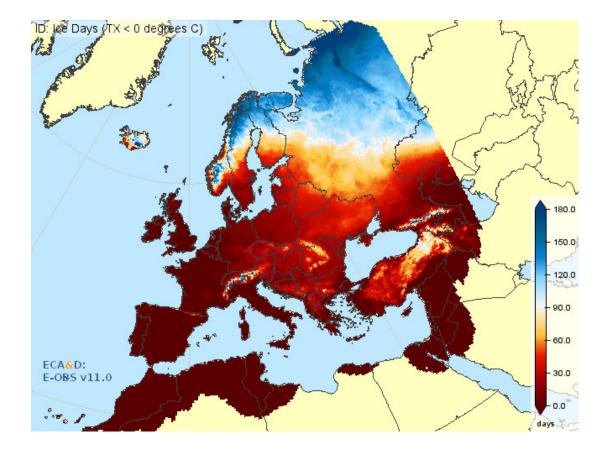

ZC-JAN 1981-2010

Zero crossing days with precipitation

ZCP-DJF 1961-1990


ZCP-DJF 1981-2010

Blizzard 14-15 March 2013



2000-2010

Threshold for blizzard: Ta≤0°C, Snow depth ≥10cm,Fx≥17m/s

E-OBS - Ice days 2000

Smoothed extremes due to interpolation? Not necessarily!

Additive (Linear) Interpolation

Linear Interpolation Formula:

$$\hat{Z}(\mathbf{s}_0,t) = \lambda_0 + \sum_{i=1}^M \lambda_i \cdot Z(\mathbf{s}_i,t)$$

where $\sum_{i=1}^{M} \lambda_i = 1$, because of unknown climate

change

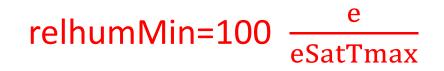
Optimal Interpolation Parameters :

 $\lambda_0, \lambda_i (i = 1,...,M)$ minimize MSE.

Inadequate formulas - Smoothed extremes

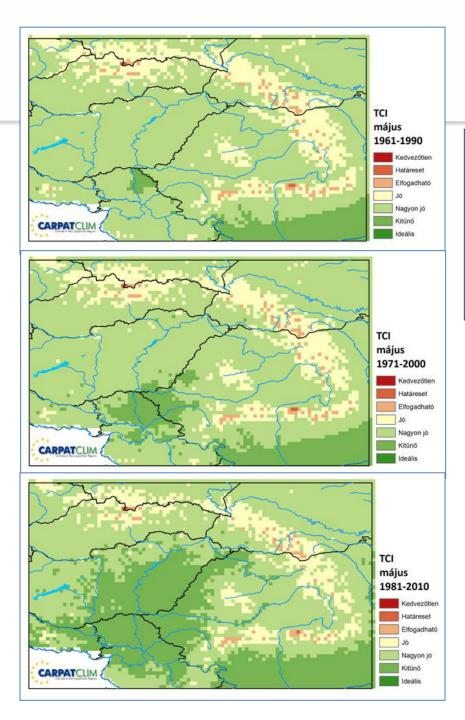
- Inverse Distance Weighting (IDW), $\lambda_0 = 0$, $\lambda_i (i = 1,...,M)$ not optimal
- Ordinary kriging, $\lambda_0 = 0$

Adequate formulas:


- Universal kriging,
- Regression (residual, detrended) kriging - MISH

TOURISM CLIMATE

Tourism Climate Index (Mieczkowski, Z, 1985)


$TCI = 8CI_d + 2CI_a + 4R + 4S + 2W$

- Ci_d daytime comfort index
- **Cl**_a daily comfort index
- **R**: precipitation
- S: sunshine duration
- W: wind speed

Ref: UK Climate Projections NATIONAL CASE STUDY, What could tomorrow's weather and climate look like for tourism in the South West of England?

Additional derived parameter in CarpatClim

TCI May in different standard periods

Increasing "ideal" region in May particularly at South part of the region

Unfavourable
Marginal
Acceptable
Good
Very good
Excellent
Ideal

Further tasks

- Computation of indicators for the ALADIN-Climate regional climate model outputs for 2021–2050 and 2071–2100
- Modified TCI and computation of the CIT

Thank you for your attention!

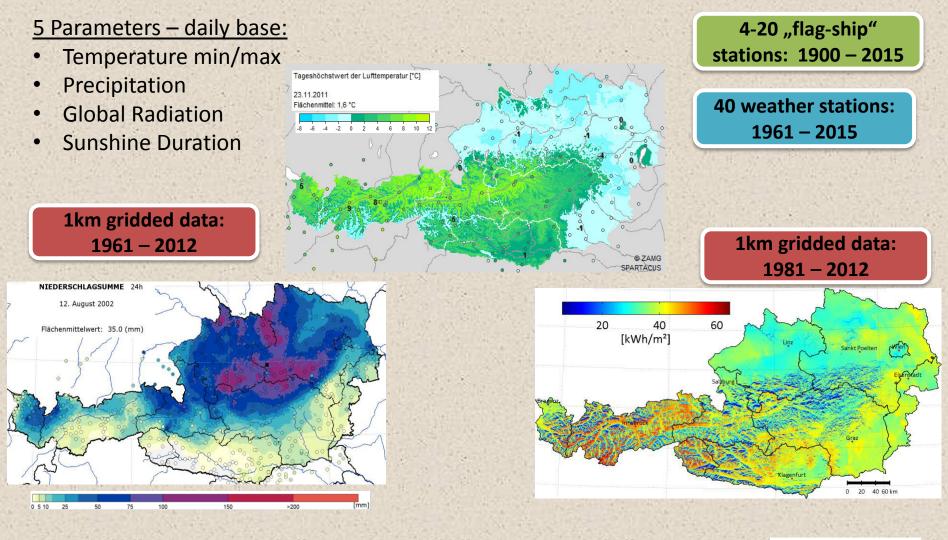
New Austrian Climate Scenarios Downscaled and improved data for key climate parameters and climate indices

Chimani B., Heinrich G., Kienberger S., Leuprecht A., Lexer A., Hofstätter M., Salzmann M., Poetsch M.S., Spiekermann R., Truhetz H.

SALZBURG ZGIS

Aim

- Concepts to adaption to climate change need high quality, high resolution climatological data
- Federation of Austria and all provinces


 Creation and Interpretation of high resolution climate information on past, present and future and climate changes

Observational Data

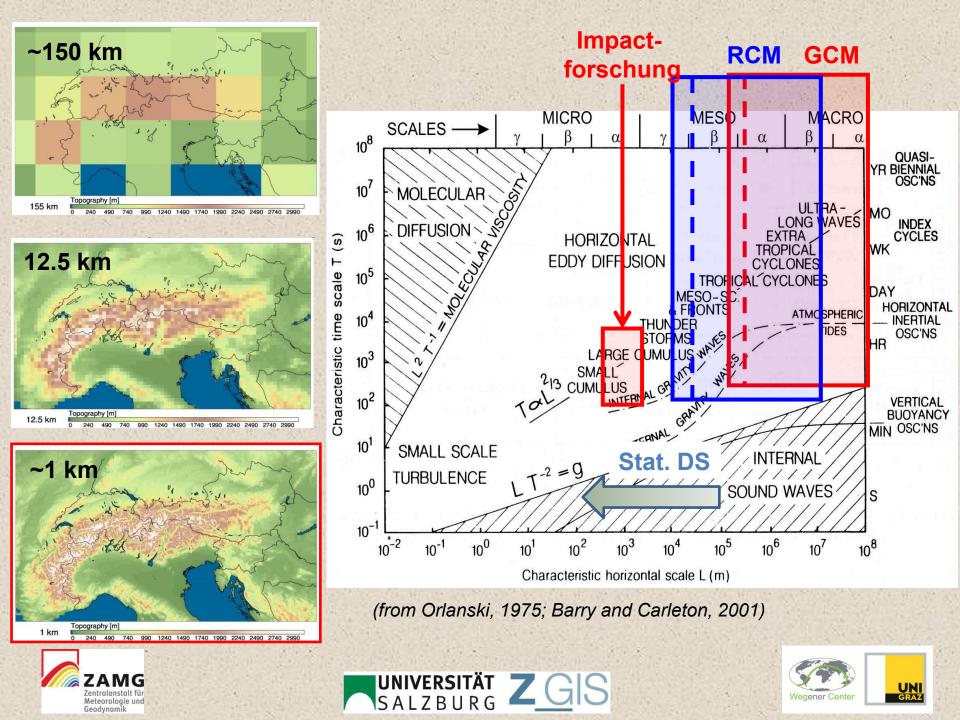
UNIVERSITÄT ZGIS

Climate Model Data

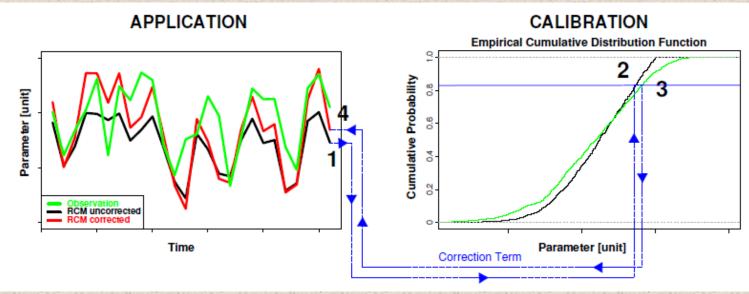
EURO-Cordex: 29 groups, 10 RCMs,13GCMs (from CMIP5) => 33(available)/79(planned) simulations in 50km resolution 29(available)/63(planned) simulations in 12.5km resolution

Used in Project:

12.5km resolution


3 representative concentration pathways:

- RCP 2.6: 1 model result
- RCP 4.5: 14 model results
- RCP 8.5: 14 model results


UNIVERSITÄT S A L Z B U R G

Downscaling of RCMs to 1km with Quantile mapping (QM)

- Downscaling of RCMs to 1km with Quantile mapping (QM)
- Calibration with observational data in 1km resolution

UNIVERSITÄT SALZBURG

- Climate model is downscaled using calibration
- => statistical characteristics (bias) are corrected, but physical characteristics of the model do not change

Climate parameter	resolution	period	quality
Tmin	1 km (12.5 km)	1971 - 2100	Bias corrected (uncorrected)
Tmax	1 km (12.5 km)	1971 - 2100	Bias corrected (uncorrected)
Tmean	1 km (12.5 km)	1971 - 2100	Bias corrected (uncorrected)
Precipitation	1 km (12.5 km)	1971 - 2100	Bias corrected (uncorrected)
Global radiation	1 km (12.5 km)	1971 - 2100	Bias corrected (uncorrected)
Rel. humidity	stations	1971 - 2100	Bias corrected
Wind velocity	stations	1971 - 2100	Bias corrected
Global radiation, Tmin, Tmax, Tmean, precipitation	stations	1971 - 2100	Bias corrected
Rel. humidity	12.5 km	1971 - 2100	uncorrected
Wind velocity	12.5 km	1971 - 2100	uncorrected

SALZBURG ZGIS

Climate Indices

TEMPERATURE INDICES 1

TM ST25 HT30 KYE TN20 HWDI CSDI	mean temperature summer days heat days kysely heat episode tropical nights heat wave duration cold spell duration
HHM	normalized anomalie.
	ST25 HT30 KYE TN20 HWDI CSDI

base period: daily, monthly, seasonal, annual, special episodes

SALZBURG

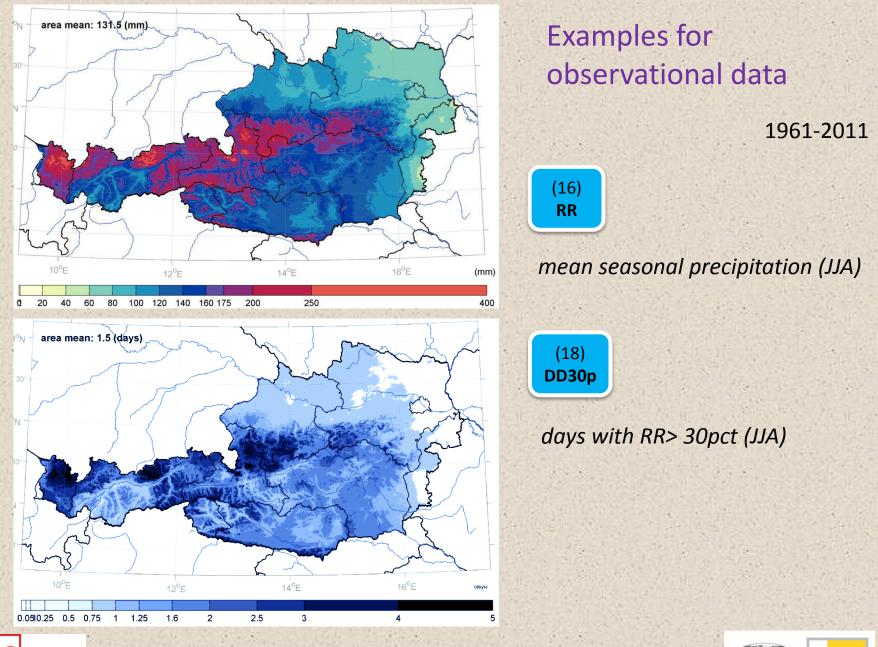
PRECIPITATION INDICES

RR	total precipitation
DD	wet days (>1mm)
DD#p	wet days (> 30/60/90/95 perctile)
R#p	precipitation intensity on wet days
Rx1d	maximum daily precipitation totals
Rx5d	maximum 5-day precipitation total
CDD1	consecutive dry days <1mm
	DD DD#p R#p Rx1d Rx5d

23) CWD1 consecutive wet days >1mm

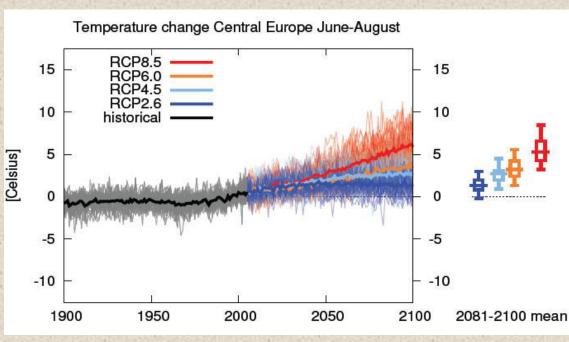
TEMPERATURE INDICES 2

9)	GSL	growing season length
10)	GSLt	mean temperature in GS
11)	GSLrr	total precipitation in GS
12)	GSLfd	frost days in GS
13)	FLfd	frost days in flowering period
14)	FD0	frost days (T _{min} <0°)
15)	ID0	ice days (T _{max} <0°)


SPECIAL INDICES

24) SC05	snow cover >5cm days
25) SC20	snow cover>20cm days
26) RG	global radiation
27) SD	sunshine duration
28) ff95d	gale wind speed
29) ff98d	storm wind speed
30) ff95 a	gale wind days
31) ff98a	storm wind days

Calculated for observational and model data



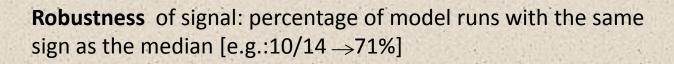
UNIVERSITÄT ZGIS

Uncertainties

Caused by: Internal variability Future human • activities (greenhouse gas emission,..) Modell • uncertainties

aus: IPCC 2013

Geodynamik



Uncertainty assessment: for each grid point and RCP

Climate Change signal

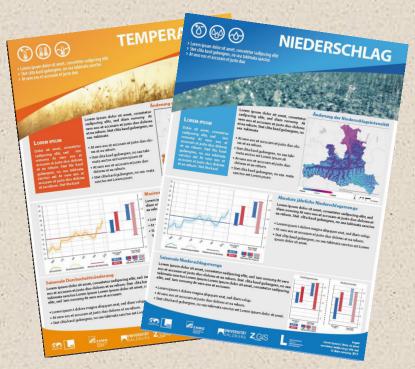
Significance of signal: percentage of statistically significant realisations with the same sign as median [e.g.: $6/10 \rightarrow 60\%$]

Comparison to Natural Variability: Is median of climate change signals within the standard deviation of the observations?

Climate chance signal of one model realization

★ ★ statistically significant
 ☆ ☆ statistically insignificant

UNIVERSITÄT SALZBURG


ensemble median (14 model realizations)

Presentation of results

 Factsheets for federal state, provinces and single municipalities including expert assessments

UNIVERSITÄT SALZBURG

Availability of Results

- Climate model data (grids/stations)

→Available as ncdf from CCCA-Datacentre (as soon as data and datacentre available, ~March 2016)

Climate indices

Climate change signals and uncertainties

Citizen Science and Phenology a showcase from Austria

Helfried Scheifinger¹, Benjamin Dauth², Florian Heigl², Thomas Hübner¹, Susanne Käfer³, **Elisabeth Koch¹**, Klaus Wanninger⁴, Daniel Wuttej⁴, Ursula Weiser¹, Johann Zaller²

- 1 ZAMG, 2 Univ. for Natural Resources & Life Sciences, 3 ÖKOLOG, 4 LACON
- Landschaftsplanung u. Consulting: all Vienna, Austria

www.naturverrueckt.at www.phenowatch.at

Citizen Science and Phenology a showcase from Austria 30.10.2015

Folie 2

Overview

- CS definition
- CS history & recent development
- NaturVerrückt
- Farbverrückt
- Lessons learned

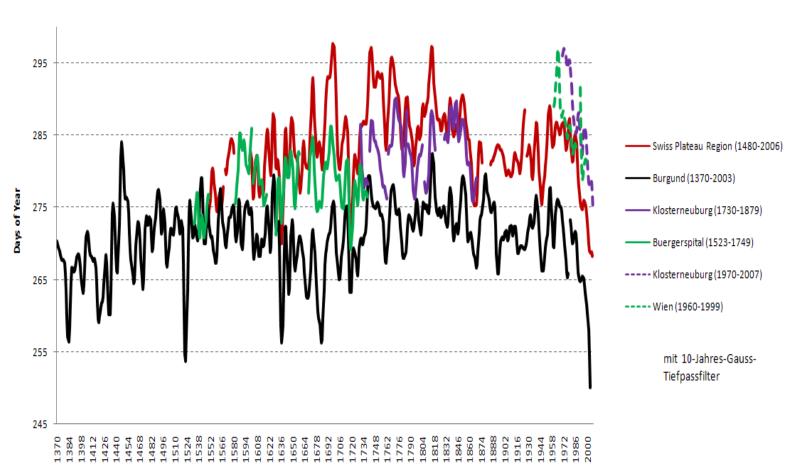
Folie 3

CS definition (SOCIENTIZE Consortium, 2013)

- Citizen Science refers to the general public engagement in scientific research activities when citizens actively contribute to science either with their intellectual effort or surrounding knowledge or with their tools and resources.
- Citizen scientists provide experimental data and facilities for researchers, raise new questions and cocreate a new scientific culture
- Citizen scientists acquire new learning and skills, and deeper understanding of the scientific work in an appealing way

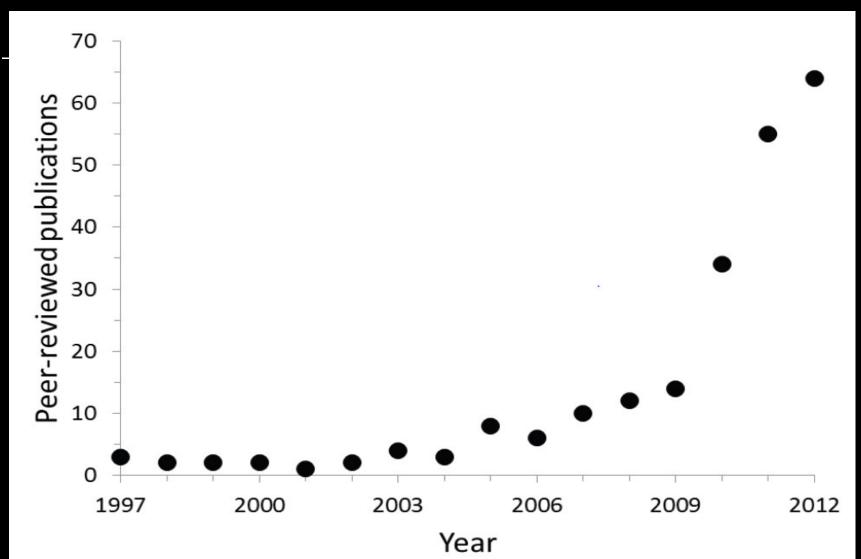
Folie 4

CS definition (SOCIENTIZE Consortium, 2013)


As a result of this open, networked and trans-disciplinary scenario, science-society-policy interactions are improved leading to a more democratic research based on evidence-informed decision making

Citizen Science and Phenology a showcase from Austria 30.10.2015

Folie 5


Some history of CS & phenology

Citizen Science and Phenology a showcase from Austria 30.10.2015

Folie 6

Recent development CS

Recent development CS Internet & Crowd sourcing

Three factors responsible for the great "explosion" of activity

Easy available technical tools for dissemination of information about projects and gathering data from the public

The increasing realisation among professional scientists that the public represent a free source of labour, skills, computational power and even finance

If we want to continue to spend taxpayers' money, it is in scientists' own interest to make sure that the public appreciates the value of what they are paying for. Undoubtedly the best way for the public to understand and appreciate science is to participate in it. Folie 8

NaturVerrückt

Impact of weather and climate on the phenology of indigenous woody plants

Students from 5 agricultural schools in Lower Austria track the seasonal development of 11 native plants and its weather/climate dependence.

Main objectives of this project:

- Observation of phenological events from ecological important native plants
- Study of the weather/climate impact on seasonal development
- Development of new methods for data acquisition Apps

The timing of seasonal activities of animals and plants is perhaps the simplest process in which to track changes in the ecology of species in response to climate change" (IPCC 2007).

Citizen Science and Phenology a showcase from Austria 30.10.2015

Folie 9

NaturVerrückt Involvement of teachers and students

Planting of the hedge 1 year before

Citizen Science and Phenology a showcase from Austria 30.10.2015

Folie 10

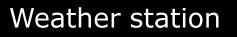
NaturVerrückt Involvement of teachers and students

Workshop teachers/scientific team

Folie 11

NaturVerrückt

Involvement of teachers and students


Logo competition

Folie 12

NaturVerrückt

Involvement of teachers and students

Folie 13

NaturVerrückt Involvement of teachers and students

Workshop with students twice a semester

Folie 14

NaturVerrückt

Involvement of teachers and students

Workshop with students twice a semester

Folie 15

NaturVerrückt

Involvement of teachers and students

Phenological observations

Folie 16

Gemeine Hasel

Oder auch: Haselstrauch, Haselnussstrauch Wissenschaftlicher Name: Corylus avellana

Gewöhnlicher Liguster

Oder auch: Rainweide, Tintenbeerstrauch Wissenschaftlicher Name: Ligustrum vulgare

Hier findet man das Gehölz

Die Hasel ist häufig anzutreffen. Sie wächst in lichten Wäldern, an Waldrändern und in Feldhecken. Sie ist eine Lichtpflanze, verträgt aber auch mäßigen Schatten. Das Areal der Hasel umfasst große Teile Europas und Kleinasiens sowie den Kaukasus. Im Norden Europas reicht das Verbreitungsgebiet bis zum Polarkreis.

So erkennt man das Gehölz

Im Winter:

- männliche Blüten (Kätzchen) hängen wie Würstchen bereits im Winter von den Zweigen
- Kätzchen strecken sich lange vor dem Laubaustrieb und sind dann gelb
- junge Zweige drüsig behaart, Knospen eiförmig vielstämmiger, buschiger Strauch

In der Vegetationsperiode:

- Blätter 6 10 cm lang
- · Blätter unterseits auf den größeren,
- Blattnerven behaart Herbstaspekt schön gelblich bis gelbbraun

Doppelgänger:

Die baumförmig wachsende Baum-Hasel (Corylus columa) stammt aus Südost-Europa und Westasien und wird gelegentlich als Zierbaum kultiviert.

Wer steht drauf?

Die Haselnüsse sind Nahrung für eine Vielzahl verschiedener Tierarten. Gut für die Hasel, denn die Nüsse werden deshalb von Kleinsäugern (Eichhörnchen, Bilchen, Mäusen) und Vögeln (Kleibern und Hähern) verbreitet. Die Haselmaus ist sogar nach ihr benannt. Der Pollen wird auch gerne von Bienen gesammelt, obwohl die Insekten nichts zur Bestäubung beitragen!

Wofür taugt das Gehölz?

- Früchte der Hasel sind essbar
- · Zweige sind sehr biegsam, weshalb sich damit tolle Bögen basteln lassen
- Haseln kann man auf Stock setzen (also knapp über dem Boden abschneiden), sie wachsen immer wieder nach

AUF'S BROT

Ohne Haselnüsse gäbe es keine Nutella, sie sind nämlich eine der Hauptzutaten dieses Aufstriches ABER: Die meisten Haselnüsse sind von einer nahen Verwandten, der Lambertshasel, Wissenschaftler nennen sie Corylus maxima.

Männliche Kätzchen vor der Strechung

behaarter Zweig

ZWEI MILLIONEN Die Hasel jäutet den Vorfrihling ein. Sie blüht also, wenn die Vegetation eigentlich nach im Wintermödus ist Warum sie das macht, hat einen besonderen Grund- die Bestrübung der Hasel übernehmen keine Blenen oder and ner insekten – so früh im Jahr sind auch nach fast keine unterwegs. Die Hasel wird vom Wind bestäubt. Und wenn die Blätter der Blume noch nicht ausgetrieben sind, funktioniert das Verblasen der Pollen wesentlich bessert Das freut die Hasel, beschert vielen allengischen Wenschen aber frahende Augen und elner innende Nose. Übrigens: Eine einzige Blüte enthält z Millionen Pollenkämer. Hatschli

MÄNNCHEN & WEIBCHEN

sehen aus wie Blattknospen, aus denen

Hier findet man das Gehölz

Der Gewöhnliche Liguster ist die einzige in Europa heimische Liguster-Art. Er ist relativ anspruchslos und kommt von der Ebene bis in untere Gebirgslagen (1.000 m) vor. Bevorzugte Standorte sind trockenwarme, kalkreiche, gut mit Nährstoffen versorgte Böden. Man findet den Liguster in lichten Wäldern, Auen und Gebüschen ebenso wie in sonnexponierten Hecken.

So erkennt man das Gehölz

Im Winter:

 buschiger mittelgroßer Strauch (1 bis 3 m) mit aufrechten, rutenförmigen Zweigen junge Zweige fein behaart, ältere Zweige kahl Knospen nur 5 mm groß, gegenständig angeordnet Beeren oft bis in den Frühling am Strauch

In der Vegetationsperiode:

3 – 6 cm lange Blätter fühlen sich ledrig an, sind glattrandig und gegenständig angeordnet Blattoberseite dunkelgrün und seidig matt glänzend, Unterseite heller und mit

- deutlicher Mittelrippe
- kleine weiße Blüten in
- 6-8 cm langen Rispen
- traubenähnliche Fruchtstände aus
- kleinen, schwarz glänzenden Beeren

Wer steht drauf?

Die streng duftenden Blüten locken Bienen, Schmetterlinge und andere Insekten zur Bestäubung an. Verschiedenen Schmetterlingsarten dient der Liguster als Futterpflanze. So frisst z.B. die Raupe des Ligusterschwärmers - eine Nachtfalterart - das Laub, und zahlreiche Tagfalterarten, wie z.B. der Kleine Fuchs, laben sich am Nektar der Blüten. Die Früchte werden gerne von Vögeln gefressen, die Samen dann ausgeschieden und dadurch verbreitet. Auch ein paar Nager naschen gerne an den schwarzen Beeren.

Wofür taugt das Gehölz?

- als dichtzweigige, gut schnittverträgliche Art gerne als Sichtschutzhecke gepflanzt
- von Imkern als Bienenweide geschätzt
- wegen intensiven Wurzel- und Ausläuferbildung als Bodenschutzpflanze für Böschungsbefestigungen geeignet

FARBGEWALTIG

Die reifen Beeren des Gemeinen Ligusters wurden früher als Farbstoff verwendet. Auf Walle entsteht ein tiefes Blau, wobei mit Eisen- oder Aluminiumsaben oder mit Soda vargebeizt wurde. Neben den reifen Beeren können aber auch die Blätter, die gelben Zweige und die Rinde zum Färben verwendet werden

Muchsform

Rhiten-Risne

Trauhenähnlicher Enuchtstand

HART UND WEICH ZUGLEICH

Das geventume now as sogar Holmågel oder auch hart. Frähe wurden daraus sogar Holmågel oder auch Rechenbögen angefertigt. Die jungen Zweige wurderum sind welch und biegsam und wurden schon in der Kömerzeich zum Koltifiechten verwendet. Dartuf deutet auch der Name hin, denn Liguster kommt vom lateinischen Wort "ligare", was "binden" bedeutet.

FarbVerrückt!

FarbVerrückt!

- > Herbstfärbung beobachten
- > Insgesamt @ 6.000 gewinnen!

Wenn du Bäume und Farben magst, bist du bel unserem Citizen Science Projekt goldrichtig und kannst mit deiner Klasse €1500,- gewinnen!

Das geht ziemlich easy. Einfach App downloaden und wie verrückt die herbstliche Blattverfärbung beobachten.

> Die App wird Mitte September aktualidert wer Download verfügbar seint

Wir brauchen eure Augen

Manchmal herbstelt es zeitig und extrem bunt, dann wieder spät und farblich eher fad. Warum das mal so und mal so ist, bestimmen die abnehmende Tageslänge, Temperatur und wahrscheinlich auch die Niederschläge. Wie diese Faktoren jedoch zusammen spielen, wissen selbst die Wissenschaftler/innen der Zentralanstalt für Meteorologie und Geodynamik ZAMC noch nicht genau. Dazu braucht es möglichst wiele Beobachtungen an Sträuchern und Bäumen vom Neusledier See bis zu den Berggipfeln Voraribergs. Und jatzt kommt ähr ins Spiel- Bitte heift uns, dem Zauber des Herbstes auf die Schliche zu kommen, indem ihr Laubverfärbung und Laubfall an möglichst vielen unserer 8 Gehötze beobachtet und an uns meidel. Wie das genau geht, checkt ihr in der App.

Für die ganze Welt

Eure App-Beobachtungen werden gesammelt und heifen Heiffnied, Sissi und Thomas von der ZAMC bei der Erforschung von Ursachen der zeitlichen Verschlebung der Lauberfärbung und des Laubfalles. Zusätzlich werden eure Beobachtungen in die internationale phänologische Datenbank eingespielt und können von Forscher/innen auf der ganzen Weit genutzt werden!

Insgesamt # 6.000,- gewinnen!

Du bisk im Wald, findest eine Rot-Buche und möchtest hire beginnende Laubfärbung meiden. Dans legst du den Baum in der App als Gehötsstation an und meidest die Phase, beginnende Laubfärbung⁺. So sammelst du Purkte mit Jedem Eintrag und Jeder Aktualisierung deiner Spots, Jeder weitere Baum oder Strauch, den du als Gehötsstation anlegst und zu dem du eine Meidung absetzt, hringt weitere Purkte. Is mahr Gehötsstationen du und deine Klassenkollegrinnen beobachten, desto mehr Purkte gibt's und ums omehr steigt eure Chance auf euren € 1,500,-Haupfgewinnt Die S Klassen mit dem meisten Beobachtungen gewinnen base Gehf Un die Klassenkause. Dem Sieger wirken € 1500,-, die zweitplatzierte Klasse gewinnt € 1.000,- und die drittplatzierte € 500,-, Das Brujekt ist übrigens sowchi für Volksachulen und Unterstutien als auch für Oberstuten gelignet. Es werden Citizen Scienze-Awards in beiden Kategorien mit insgesamt € 6.000,- vergebenl

immer zeitiger Frühling, immer später Herbst

Mit der doppelten Geschwindigkeit als im weltweiten Mittel ist die Jahresmitteltemperatur im Apernaum während der letzten 100 Jahre um etwa 1.8°C angestieger. Das wirkt sich nicht nur auf uns Menschen sondern auch auf Pflanzen und Tiere aus. So zieht der Frühling mit der ersten Hüte oder dem Beginn des Laubaustriebs um etwa 7 bis 10 Tage hüher ins Lund als noch vor 30 Jahren und der Beginn der Herbetweifabrung des Laubes hat sich in manchen Regionen um einige-Tage nach hinten verschofen, insgesamt ist es dadurch zu einer Verlängerung der Vegetationsperiode um bis zu zwei-Wochen gekommen.

Wieso ist der Herbst manchmal so bunt?

Wann es in der Natur Frühling wird, steuern in unseren Breiten hauptsächlich die Temperaturverhältnisse. Das ist gut erforschit und kann von den Wissenschaftler/Innen die Zeintralanstalt für Meteonologie und Geodynamik ZAMG gut simuliert, wenden. Ganz anders sieht es allerdings mit dem Herbst aus. Die Modellierung der Herbstiphasen stellt immer noch eine Herausforderung dar. Neben den Temperaturverhältnissen während der Vegetationsperiode und der Photoperiode, so nennt man die Tagestänge, wird auch der Niederschlig als Einflussfaktor vermutet. Um diese Zusammenhänge beser au verstehen und sagen zu können, wann der Herbst in den vielfättigen Regionen Österreichs in der Natur wirklich ins Land zieht, braucht es möglichst viele Beobachtungen an Sträuchern und Bäumen vom Neusieller See bis zu den Berggipfein Vorarbergs. Damit das geingt, sind alle Schüler/Innen aufgerufen, den Wissenschaftler/Innen der ZAMG unter die Arme zu greifen und das Farberspektakel dies einichenden Herbites zu beobachten!

Facts zu FarbVerrückt

Projektbeteiligung: Anmeidung ab Mitte September, Mitmachen von 1. bis 31. Oktober 2015 Zielgruppe: alle Personen, Schüler/innen und Lehrpersonen Geeignet für: Volksschulen, Unterstufen und Oberstufen Ort: überal, wo Bäume vorkommen Tätigkeiten: Bestimmung und fotografieren der herbstlichen Laubverfärbung und des anschleßenden Laubfalls Notwendige Ausstattung: Smartphone mit Kamera Projektieltene Einrichtung: Zentralanstalt für Meteorologie und Geodynamik Dr. Heitnied Scheifinger, heftried.scheifinger@zamg.ac.at

www.naturverrueckt.at/farbverrueckt

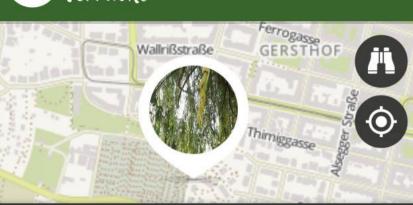
30.10.2015

Folie 19

FarbVerrückt

Cornus sanguinea | Seinem Namen treu ergeben malt der Herbst ein sattes Rot

Vogel-Kirsche


T. K. An

Prunus avium | Buntes, großes Farbenkino. Mithin die schönsten Rottöne im Pflanzenreich.

HÄNGE-BIRKE

8+ t f

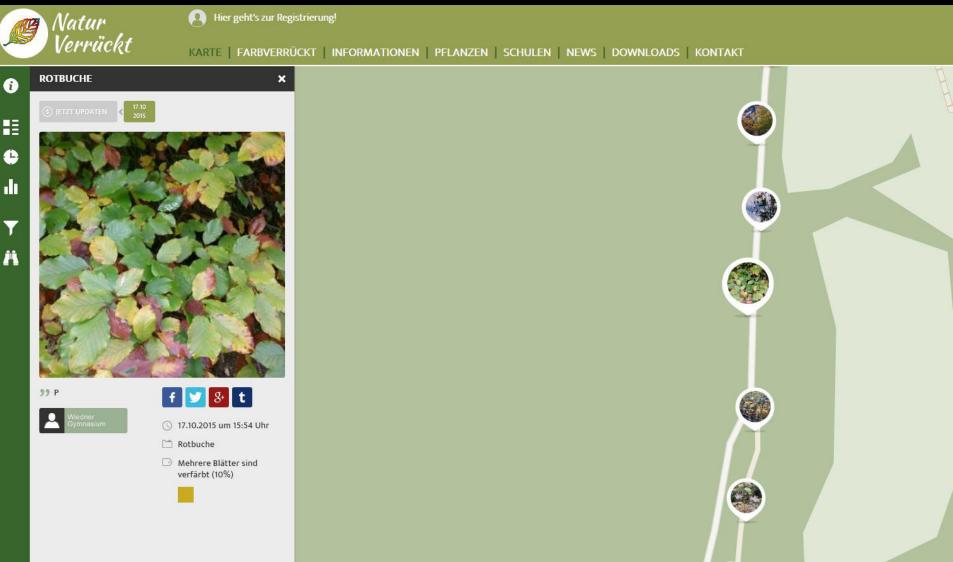
01.10.2015 um 18:33 Uhr

Hänge-Birke

01.10

Mehrere Blätter sind verfärbt (10%)

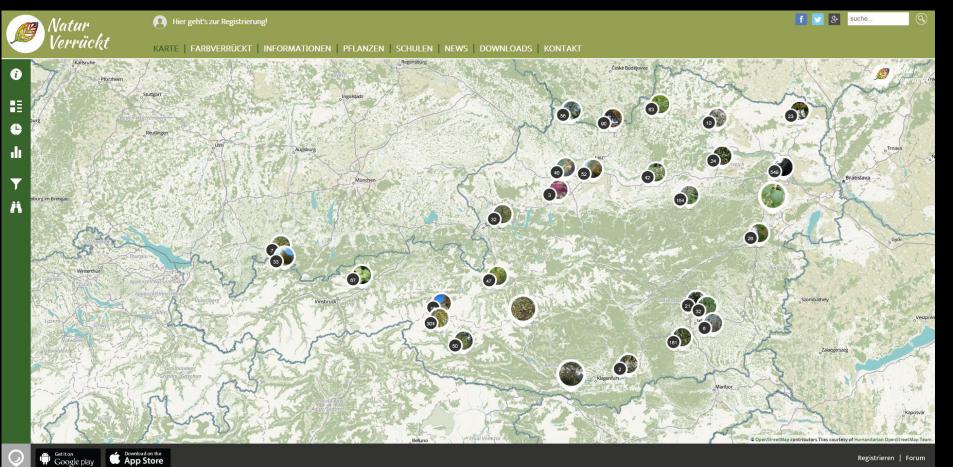
1 28 % 🔳


0

×

Folie 20

FarbVerrückt



Folie 21

FarbVerrückt

Registrieren | Forum

Lessons learned

- Apps much more time needed for development and approval than estimated -> demotivation of students
- Motivation of teachers is essential
- Mass campaign app shoould be more self explaining
 -> data lack quality
- Other resp. more plants (agricultural schools...), siting of the hedge
- KISS

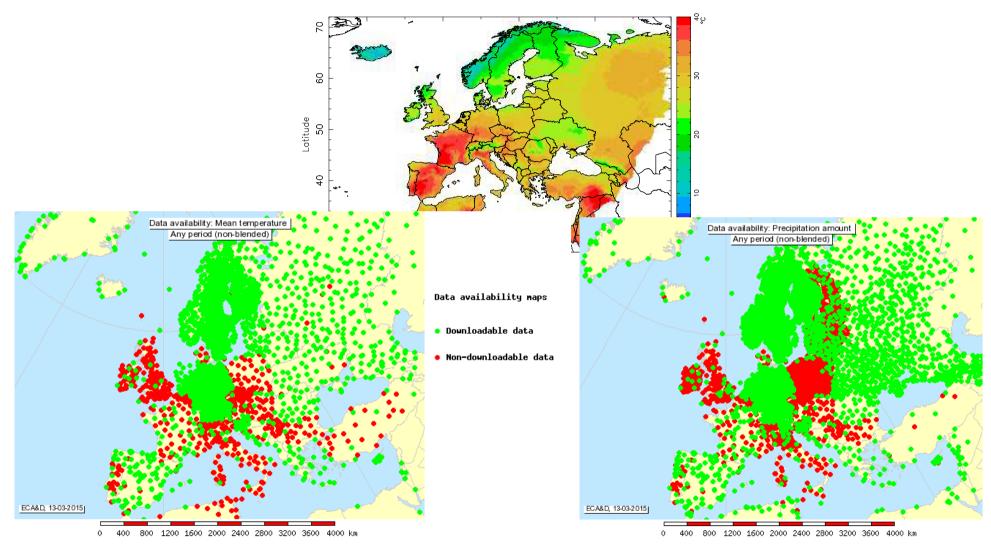
Folie 24

www.naturverrueckt.at

www.phenowatch.at

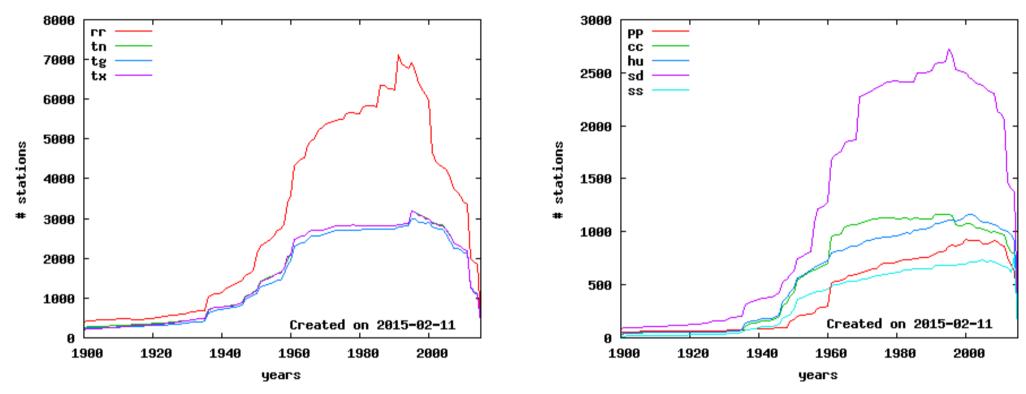
New developments in ECA&D and E-OBS

ECA&D Team

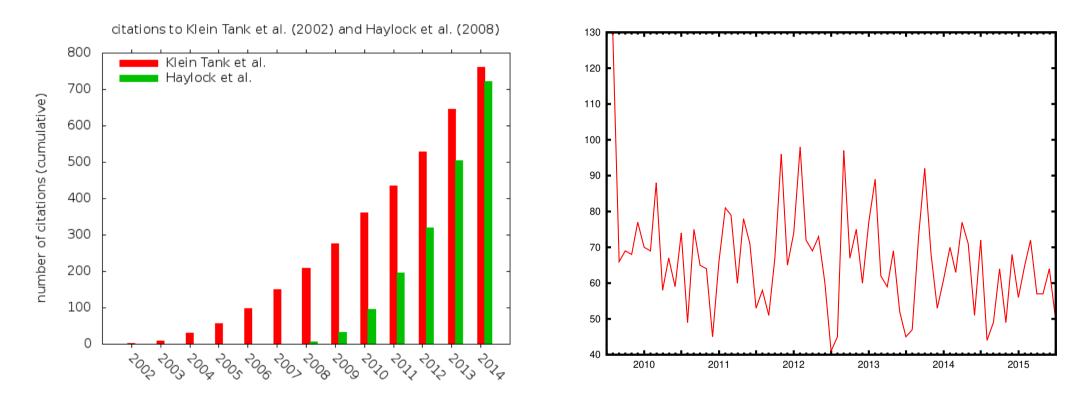

Royal Netherlands Meteorological Institute (KNMI)

EUMETNET Data Management Workshop - p.1

What is the European Climate Assessment & Dataset?

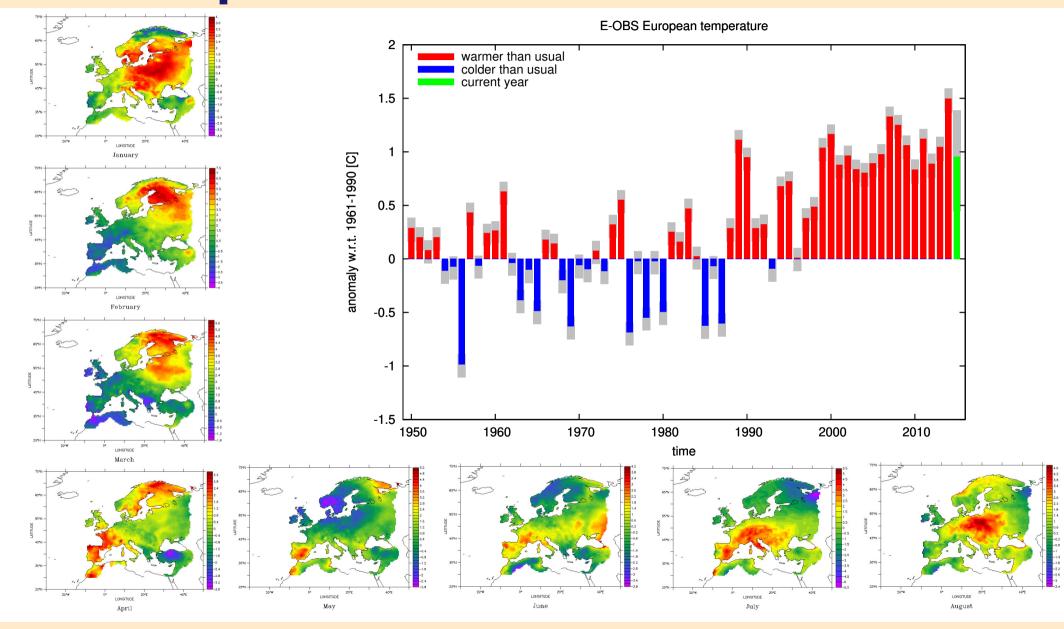

E-OBS TX 04-08-2003

http://www.ecad.eu


What is the European Climate Assessment & Dataset?

- infrequent data updates from NMHS
- (very) small part of national network
- update of metadata is a challenge

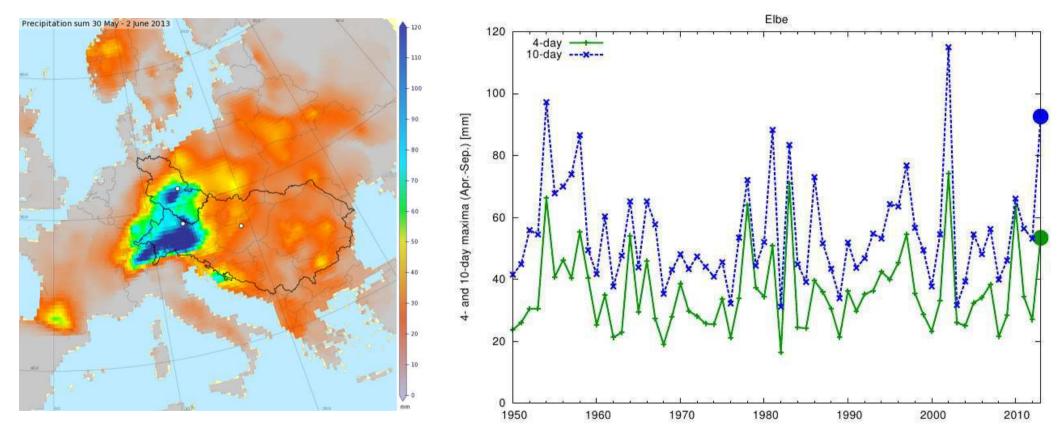
Use of ECA&D


E-OBS is used in: biology (11%), climate science (10%), hydrology (6%), agriculture (5%) and health (3%)

Aim of ECA&D

- provide a pan-European view on climate variability and change
- provide dataproducts to
 - scientific research community
 - National Meteorological Services
- complementary to the products provided by the NMHSs
- respects the data policy of the NMHS

Monitoring European climate - temperature


ECA & D

EUMETNET Data Management Workshop - p.6

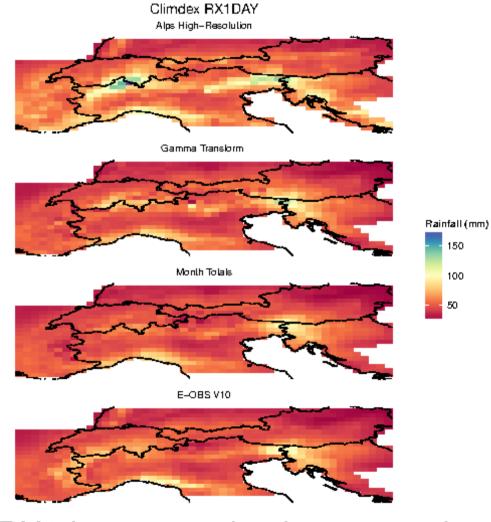
Monitoring European climate extreme events

Central European flooding of 2013

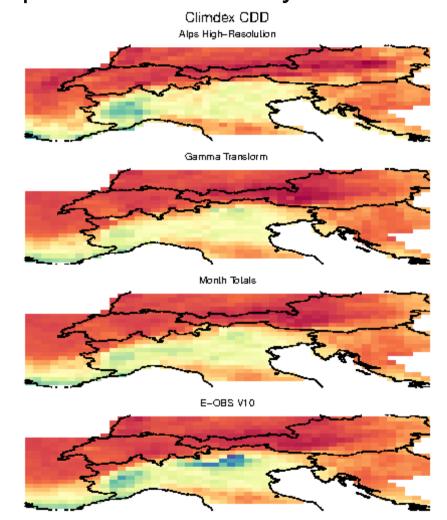
http://cib.knmi.nl

New developments - data update

• Sogrape S.A. (Portugal) now contributes data


 number of NMSs contributing monthly updates increases (ch, cz, de, fi, ie, nl, no, si)

contacts with regional weather services in Italy (ARPA-SIMC, ARPA Valle d'Aosta)

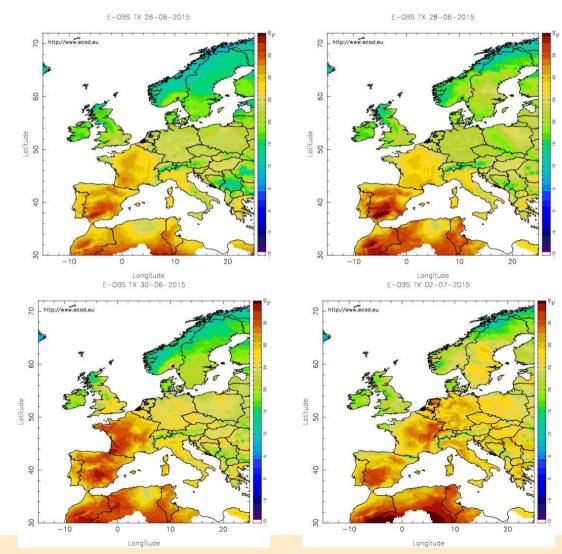


gamma-transform technique instead of spline in the monthly value

RX1day: somewhat better match

CDD: undershoot corrected

Days 50


40

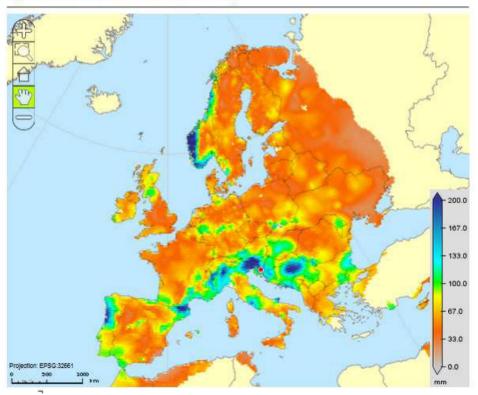
30

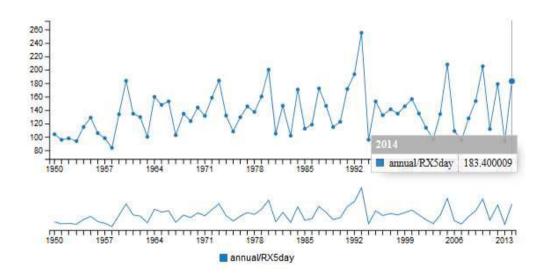
20

New developments - daily updates

Development of heat wave end of June/start of July 2015

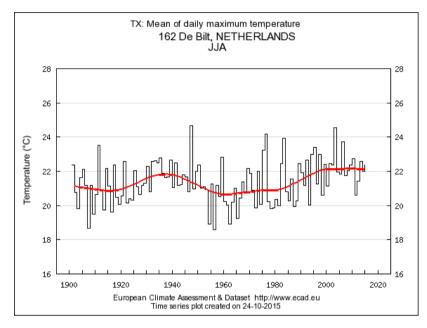
ECA&D


EUMETNET Data Management Workshop - p.10



New developments - E-OBS-based indices

Select per annual	riod & Index	0	✓ RX5day: Highest 5-day precipitation amc < <>>	
Select yea	ar			-1
2014 Define	min: 0	max: 200	Submit Reset	
range				


Timeseries for a location (click on map & scroll down)

Future developments - homogenization of ECA&D data

- how to deal with homogenized data from NMHSs?
 - avoid two homogenized versions of one series
- can we think of a more intelligent way of blending?
 - avoid blending two very distinct (but nearby) stations

Conclusions

- give us your feed back
 - how to be more useful for NMHSs
 - how to be more useful for Scientific research community
 - how to avoid being a threat to NMHSs

contact us at: eca@knmi.nl