"High-quality" climate data ...

... "accurate and representative" measurements
... "efficient and reliable" data quality control
... "standardized and relevant" metadata
... "rational and efficient" homogenization procedures
... „???" grid datasets

What does „high quality" mean with regard to

spatial climate datasets?

Practice and experience at MeteoSwiss

Christoph Frei and Francesco Isotta
Rebekka Erdin, Denise Keller, David Masson, Reinhard Schiemann, Raphaela Vogel, Bettina Weibel, Marco Willi (former collaborators)

Data Management Workshop 28.-30.10.2015, St. Gallen, Switzerland

(Application and Users

Hydrology
Runoff forecasting, Flood protection, Land slide risks, ...

Agriculture
Crop suitablity maps, Crop desease and pests, Subsidies, ...

Energy \& Construction
Renewable energy, Heating/cooling design, ...

Snow \& ice
Avalange risk, Slope stability,

Agencies
Federal,
Regional

Private Sector

Internal
Climate monitoring Model verification

Local forecasts CC-Scenarios, ...

Research ETH, Univ., FHS Univ. outside CH

> Insurance
> Engineering
 Glacier monitoring, ...

$\oplus \quad$ User Requirements

high accuracy (small random errors)

fine spatial resolution (km)

high temporal resolution (1 day, 1 hour)
multi-parameter - physically consistent

multi-decadal - climate consistent
timely - possibly real-time

$\boldsymbol{\oplus}$ Trends in Viticulture

$\boldsymbol{\oplus}$
 Effects from network changes

Interpolation Bias

Purpose-Design Philosophy

Data products targeted to application groups

Methods depend on intended application

Individual balance between method and data

Limitations / uncertainties are openly cummunicated

© The MCH Grid-Data Suite

Temperature (degC)

Relative Sunshine Duration (\%)

~ 40 products, Temp (m, n, x), Precip, Sun, Radiation territory of Switzerland, 2 km norm, monthly, daily, (hourly), anomaly 1961-actual, 2004-actual (radar-gauge) automatic production and delivery web, reports

Precipitation - Products

Real-time (hourly)
Radar-Gauge combination, t-KED
Erdin et al. 2012, Sideris et al. 2014

Anomaly wrt Norm
>1960, SYMAP
Shepard 1984, Frei et al. 1998

Real-time (daily)
Statistical reconstruction (RSOI)
Schiemann et al. 2012

High-resolution (daily, monthly, ...) PRISM \& SYMAP
Schwarb et al. 2001, Frei et al. 1998, 2004

$\boldsymbol{\oplus}$ Relative Sunshine Duration

High-resolution SSD
Merging satellite (MSG Clear-sky index) and in-situ data (Heliometer, ~75 stations) Non-contemporaneous, PCA \& KED
Frei et al. 2015, Stöckli 2013

Frei et al. 2015

SS : Fraction of explained spatial variance (spatial Nash-Sutcliffe efficiency)

SS (-)

Leave-one-out crossvalidation all days 1998-2001

\boldsymbol{H}
 Documentation for Users

$\boldsymbol{\oplus}$
 User Wishes (2013)

Your applications could benefit from new products/developments with priority on ...
... higher spatial resolution
... finer time resolution (hourly)
... more parameters
... more real-time products
... uncertainty information (quantitative)
... longer time coverage (<1961)
... better long-term consistency
... areal extent beyond Swiss border

Number of responses: 26

\oplus Our Experience

- "High quality" = USEFUL. Meeting the requirements of applications.
- Requirements are diverse. Products tailored for applications.
- There is not "a best method".
- Users need to grapple with requirements and specifications. User-friendly product information.
- Be honest about limitations.
- Improving through collaboration. Bridging producer - user gap.
- "High-quality climate services" is about sharing thought, not just data.

$\boldsymbol{\oplus}$
 Publications

Erdin, R., C. Frei, and H. R. Künsch, 2012: Data transformation and uncertainty in geostatistical combination of radar and rain gauges. J. Hydrometeorol., 13, 1332-1346, doi:10.1175/JHM-D-11-096.1.
Frei, C., 2014: Interpolation of temperature in a mountainous region using nonlinear profiles and non-Euclidean distances. Int. J. Climatol., 34, 1585-1605, doi:10.1002/joc.3786.
Frei, C., M. Willi, R. Stöckli, and B. Dürr, 2015: Spatial analysis of sunshine duration in complex terrain by noncontemporaneous combination of station and satellite data. Int. J. Clim., doi:10.1002/joc.4322.
Hiebl, J., and C. Frei, 2015: Daily temperature grids for Austria since 1961 - concept, creation and applicability. Theor. Appl. Clim., doi:10.1007/s00704-015-1411-4.
Isotta, F. A. and Coauthors, 2014: The climate of daily precipitation in the Alps: Development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int. J. Clim., 34, 1657-1675, doi:10.1002/joc. 3794.
Isotta, F. A., R. Vogel, and C. Frei, 2015: Evaluation of European regional reanalyses and downscalings for precipitation in the Alpine region. Meteorol. Z., 24, 15-37.
Masson, D., and C. Frei, 2014: Spatial analysis of precipitation in a high-mountain region: Exploring methods with multi-scale topographic predictors and circulation types. Hydrol. Earth Syst. Sci., 18, 4543-4563, doi:10.5194/hess-18-4543-2014.
Masson, D., and C. Frei, 2015: Long-term variations and trends of mesoscale precipitation in the Alps: Recalculation and update for 1901-2008. Int. J. Clim., (in press).
Vogel, R., 2013: Quantifying the uncertainty of spatial precipitation analyses with radar-gauge observation ensembles. Scientific Report MeteoSwiss, 95, 80 pp.
Willi, M., 2010: Gridding of daily sunshine duration by combination of station and satellite data. Technical Report MeteoSwiss, 232, 89 pp.

Free access to climate observations from Germany:

An overview of recent activities of DWD's Climate Data Center (CDC)

Frank Kaspar, Andrea Kaiser-Weiss, Elsbeth Penda, Frank Kratzenstein
Deutscher Wetterdienst

Data policy: „Geodatennutzungsverordnung"

\rightarrow Since 2014 DWD freely provides a much greater selection of climate data (national and international data).
\rightarrow This was possible based on the so-called "Geodatennutzungsverordnung" (for govermental data).
\rightarrow Data is protected by copyright, but may be used without any restrictions, provided that the source is indicated ("Deutscher Wetterdienst"). For details see the "terms_of_use.txt".
\rightarrow Data can be accessed here:
ftp://ftp-cdc.dwd.de/pub/CDC/

Index von ftp://ftp-cdc.dwd.de/pub/CDC/

T In den übergeordneten Ordner wechseln

Name

Change_log_CDC_ftp.txtError_log_CDC_ftp.txtLiesmich_intro_CDC-FTP.pdf
Liesmich_intro_CDC-FTP.txt
Z
Nutzungsbedingungen_German.pdf
Nutzungsbedingungen_German.txt
2
Readme_intro_CDC_ftp.pdf
Readme_intro_CDC_ftp.txtTerms_of_use.pdf
Terms_of_use.txt
derived_germany
grids_europegrids_germany
\square help
\square observations_germany
\square observations_global
\square regional_averages_DE

Größe Zuletzt verändert

13 KB	15.10 .2015	$13: 30: 00$
5 KB	19.08 .2015	$06: 44: 00$
222 KB	15.10 .2015	$10: 48: 00$
7 KB	15.10 .2015	$10: 48: 00$
34 KB	30.06 .2014	$00: 00: 00$
2 KB	30.06 .2014	$00: 00: 00$
315 KB	15.10 .2015	$10: 50: 00$
7 KB	15.10 .2015	$10: 50: 00$
252 KB	02.07 .2014	$00: 00: 00$
3 KB	02.07 .2014	$00: 00: 00$
	06.06 .2014	$00: 00: 00$
	19.06 .2015	$11: 18: 00$
	12.05 .2015	$08: 52: 00$
	08.10 .2015	$17: 26: 00$

Observations from German stations 19.08.2015 08:58:00
23.07.2014 00:00:00
10.07.2014 00:00:00

Index von ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/
§ In den übergeordneten Ordner wechseln

Name

\square climate
\square phenology

Größe Zuletzt verändert
02.06.2014 20:13:00
02.06.2014 20:23:00

Observations at German stations

Historical and recent data:

Air temperature, soil temeprature, pressure, wind (speed and dierction), sunshine duration, cloudiness and radiation

Temporal resolution:

hourly, daily, monthly, long-term
(1961-90, 1971-2000, 1981-2010)

Phenology

approx. 1200 active stations

Reporting:

Annual and immediate reporters where the state of development of selected plants (e.g., apple, birch, snow drops, goose berry, wheat, wine etc) is reported.

Remarks on provision of station data

Historic data in the data base might change due to quality control or data rescue activities.
Historic time series on the public server are therefore updated once a year.
,Recent data‘ include approx. the data of the last year (until yesterday). These packages are updated daily.

Data rescue

Annual number of climate stations digitized by the KLIDADIGI project in the period 2006-2015 (colors)

Selected examples of station-related metadata (in German, station ,Kassel'):

Top:

details on daily average wind speed;

Bottom:

 instrumentation used for precipitation measurements.| Stations_ID | Stationsname | Parameter | Parameterbeschreibung | Einheit | Von_Datum | Bis_Datum | Datenquelle | Zusatz-Info | Besonderheiten | Literaturhinweis |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2532 | Kassel | FM | Tagesmittel der Windgeschwindigkeit m / s Messnetz 3 | $\mathrm{m} / \mathrm{sec}$ | 19540101 | 19741231 | Winddaten (Stundenmittel, maximale Windspitze 00:00-23:59 MEZ) generiert aus analogen Registrierungen. Richtungsangaben in der 32-teiligen Windrose. | arithm.Mittel aus mind. 21
 Stundenwerten | | |
| 2532 | Kassel | FM | $\begin{gathered} \text { Tagesmittel der } \\ \text { Windgeschwindigkeit } \mathrm{m} / \mathrm{s} \\ \text { Messnetz } 3 \end{gathered}$ | $\mathrm{m} / \mathrm{sec}$ | 19750101 | 19990831 | Winddaten (Stundenmittel, maximale Windspitze 00:00-23:59 MEZ) generiert aus analogen Registrierungen. Richtungsangaben in der 36 -teiligen Windrose. | arithm.Mittel aus mind. 21
 Stundenwerten | | |
| 2532 | Kassel | FM | Tagesmittel der Windgeschwindigkeit m / s Messnetz 3 | m/sec | 19980201 | 20030831 | Winddaten (Stundenmittel, maximale Windspitze 23:51-23:50
 UTC) generiert aus
 10-Minutenmittel von automatischen Stationen der 1.Generation (MIRIAM/AFMS2), Richtungsangaben in 36 -teiliger Windrose | arithm.Mittel aus mind. 21 Stundenwerten | | |
| 2532 | Kassel | FM | $\begin{aligned} & \text { Tagesmittel der } \\ & \text { Windgeschwindigkeit } \mathrm{m} / \mathrm{s} \\ & \text { Messnetz } 3 \end{aligned}$ | m/sec | 20011001 | 20020530 | Winddaten (Stundenmittel, maximale Windspitze 23:51-23:50 UTC) generiert aus SYNOPMeldungen, Richtung als 10-Minutenmittel aus SYNOP. Termin, Richtungsangaben in 36 -teiliger Windrose | arithm.Mittel aus mind. 21 Stundenwerten | | |
| 2532 | Kassel | FM | Tagesmittel der Windgeschwindigkeit m / s Messnetz 3 | $\mathrm{m} / \mathrm{sec}$ | 20030901 | 20131031 | Winddaten (Stundenmittel, maximale Windspitze 23:51-23:50 UTC) generiert aus 10-Minutenmittel von automatischen Stationen der 2. Generation (AMDA), Richtungsangaben in 36 -teiliger Windrose | arithm.Mittel aus mind. 21 Stundenwerten | | |

eneriert: 22.05.2014 - Deutscher Wetterdienst -
ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/daily/k//historical/

Index von ftp://ftp-cdc.dwd.de/pub/CDC/

In den übergeordneten Ordner wechseln

Name
: ${ }^{2}$ Change_log_CDC_ftp.txt
Error_log_CDC_ftp.txt
$\$$ Liesmich_intro_CDC-FTP.pdf
Liesmich_intro_CDC-FTP.txt
\Rightarrow Nutzungsbedingungen_German.pdf
Nutzungsbedingungen_German.txt
\geqslant Readme_intro_CDC_ftp.pdf
: Readme_intro_CDC_ftp.txt
\geqslant Terms_of_use.pdf
围 Terms_of_use.txt
derived_germany
grids_germany Gridded products for Germany
\exists help
observations_germanyobservations_global
Eregional_averages_DE

Größe	Zuletzt verändert	
3 KB	10.02 .2015	$11: 56: 00$
3 KB	20.01 .2015	$11: 10: 00$
207 KB	22.10 .2014	$14: 02: 00$
7 KB	22.10 .2014	$14: 02: 00$
34 KB	30.06 .2014	$00: 00: 00$
2 KB	30.06 .2014	$00: 00: 00$
333 KB	07.11 .2014	$14: 56: 00$
6 KB	07.11 .2014	$15: 01: 00$
252 KB	02.07 .2014	$00: 00: 00$
3 KB	02.07 .2014	$00: 00: 00$
	06.06 .2014	$00: 00: 00$
	26.06 .2014	$00: 00: 00$
	04.02 .2015	$12: 05: 00$
	11.02 .2015	$09: 01: 00$
	23.07 .2014	$00: 00: 00$
	10.07 .2014	$00: 00: 00$

Gridded fields covering Germany at different temporal resolutions (not every parameter is given at all resolutions).

Following precipitation data are available: RADOLAN precipitation fields are derived from radar together with station data (hourly, daily).

REGNIE precipitation fields are derived from precipitation stations only (daily). Precipitation fields derived from climatological stations only are given with monthly resolution.

Soil moisture, soil temperature at 5 cm depth, potential and real evaporation are available at daily, monthly, and multi-annual resolution

Air temperature (mean, max, min), sunshine duration, drought index, as well as the numbers of days with snow, frost days, or exceeding certain thresholds for temperature or for precipitation are given at monthly or multi-annual resolution.

Solar irradiance fields are derived from satellite data and ground-based stations at monthly, annual and multi-annual resolution.

Wind energy related parameters derived from station measurements are given as multiannual mean.

ROUTHM1 2014-07-21 08:35:42
24 STD. ND.HOEHE GEMESSEN AM 21.07.2014 O6UTC

\rightarrow derived from station measurements (REGNIE) ftp://

ROUTHM1 2014-07-22 09:25:15
Summe der RW-Stunden vom Vortag 06:50 bis 21.07.14 05:50 UTC (SKY)

\rightarrow derived from radar observations combined with station data (RADOLAN).

\Rightarrow Recent development:

Information for Germany's federal states.

Index von ftp://ftp-cdc.dwd.de/pub/CDC/
§ In den übergeordneten Ordner wechseln

```
Name
# Change_log_CDC_ftp.txt
```

```
    Error_log_CDC_ftp.txt
Z
    Liesmich_intro_CDC-FTP.pdf
```

```
    Liesmich_intro_CDC-FTP.txt
#
    Nutzungsbedingungen_German.pdf
    Nutzungsbedingungen_German.txt
```

```Readme_intro_CDC_ftp.pdf
Readme_intro_CDC_ftp.txt
```



```
Terms_of_use.pdf
Oerms_of_use.txt
\(\rightarrow\) derived_germany
derived data
```

```grids_germany
help
observations_germany
observations_global
regional_averages_DE
```

Größe	Zuletzt verändert	
2 KB	12.09 .2014	$10: 39: 00$
2 KB	19.09 .2014	$10: 42: 00$
201 KB	31.07 .2014	$16: 43: 00$
6 KB	31.07 .2014	$16: 43: 00$
34 KB	30.06 .2014	$19: 51: 00$
2 KB	30.06 .2014	$20: 11: 00$
327 KB	30.06 .2014	$21: 16: 00$
5 KB	30.06 .2014	$21: 16: 00$
252 KB	02.07 .2014	$13: 32: 00$
3 KB	02.07 .2014	$13: 32: 00$
	06.06 .2014	$10: 07: 00$
	26.06 .2014	$16: 46: 00$
	24.09 .2014	$10: 49: 00$
	09.06 .2014	$10: 58: 00$
	23.07 .2014	$12: 36: 00$
	10.07 .2014	$07: 19: 00$

Derived parameters at station locations

\rightarrow Soil parameters include the potential and real evaporation over grass and sandy clay, the soil moisture below sand and sandy clay, the calculated soil temperatures at $5 \mathrm{~cm}, 10 \mathrm{~cm}, 20 \mathrm{~cm}, 50 \mathrm{~cm}$ and 100 cm depth below bare soil, and the maximal frost penetration depth.

Available resolution: daily, monthly and multi-annual. The soil parameters are calculated for about 320 stations since 1991.

Data set descriptions

\rightarrow Metadata are provided by the internal experts for each data product (-> Excel)
\rightarrow Automatic procedure to generate ,data set description (PDF).
\rightarrow INSPIRE-XMLs for GISC or DOIregistration can also be automatically (and consistently) generated.

DATA SET DESCRIPTION

Phenological observations of crops from sowing to harvest (immediate reporters)
Version v0.x
 reperianal. Vorion vax, 2015.

INTENT OF THE DATASET
 tegesef whit a qually byte.

POINT OF CONTACT

63067 Conarisech

DATA DESCRIPTION
Spatiel coverage Comery

Temporil cowerage 01.01.1079-cuntent yart
Temporal resolution armuly

Paramaters

 The Cuellamarionet Cuvitantarimenal. 1 -only formil comto

Datasets from externally funded activities

\rightarrow Gridded products for Europe
\rightarrow Homogenized radiosonde data

daily grids temp./wind for Europe 2001-2010

Daily mean temperature 31 July 2010

Daily wind speed 28 February 2010

doi: 10.5676/DWD_CDC/DECREG0110v1

High-resolution daily gridded datasets of air temperature and wind speed for Europe: doi:10.5194/essdd-8-649-2015 (ESSD)

Earth Syst. Sci. Data Discuss., 8, 649-702, 2015
www.earth-syst-sci-data-discuss.net/8/649/2015/ doi:10.5194/essdd-8-649-2015
© Author(s) 2015. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Earth System Science Data (ESSD). Please refer to the corresponding final paper in ESSD if available.

High-resolution daily gridded datasets of air temperature and wind speed for Europe

S. Brinckmann ${ }^{1}$, S. Krähenmann ${ }^{2}$, and P. Bissolli ${ }^{1}$
${ }^{1}$ Climate Monitoring, Deutscher Wetterdienst, Frankfurter Strasse 135, 63067 Offenbach, Germany
${ }^{2}$ Central Climate Office, Deutscher Wetterdienst, Frankfurter Strasse 135, 63067 Offenbach, Germany

Received: 30 June 2015 - Accepted: 8 July 2015 - Published: 12 August 2015

Homogenized historical German radiosonde measurements (project MOSQUITO/MiKlip)

DOI for Scientific and Technical Data
 10.5676/DWD_CDC/PAST-RS-H

Title
Homogenized historical German radiosonde measurements (project MOSQUITO/MiKlip)

Citation

Pattantyus-Abraham, Margit: Homogenized historical German radiosonde measurements (project MOSQUITO/MiKlip). Version v001, 2014, DWD Climate Data Center (CDC), DOI:10.5676/DWD_CDC/PAST-RS-H.

Creators

Pattantyus-Abraham, Margit (Deutscher Wetterdienst)

Publisher

DWD Climate Data Center (CDC)
Publication Year
2015
Version
v001

Summary

This homogenized monthly radiosonde data had been prepared within the project MOSQUITO/MiKlip, in order to generate dataset for decadal climate model validation. The data is based on 12 German radiosonde stations. Monthly means are only taken if more than 8 data per month (separately for dav-time and niaht-time soundinas) is available. The temboral coverage of the dataset ranaes from Januarv 1950 until November 2014.

Summary

Current status:

\rightarrow Since last year, DWD significanlty extended free access to climate data
\rightarrow These data are currently provided with a FTP-Server
\rightarrow Academic users are very enthusiastic about that; others would like to have more interactive access to the data.
\rightarrow An interactive portal is currently in preparation („CDC-2.0")

Why do we need historical climate data?

Context

Ballarat, Victoria, 2000

Susan Gordon-Brown, State Library of Victoria (SLV)

Northern South Australia, 1865

Calibration

University of Wisconsin

Coverage

What exists in Aust. for 1788-1860?

TABLE OF RAIN.
Stātement of the Fall of Rain at the Van Diemen's Land Compary's Establishnent, Hampshire Hills, during the years 1835-1830, by Joseph Milligan, Esq.

sOUTH AUSTRALIA.

Stations are confined to the coast

Data are available from 1788 !

Some observations have biases

Images used with permission from SLNSW, Science Museum UK.

Others have reliability issues

Port Arthur mean sea level pressure 1837-1843

But overall are surprisingly good

East coast, 1826-1860

Ashcroft et al. 2014. anomalies relative to 1910-1950 and reset to zero

$\operatorname{Tmax}\left({ }^{\circ} \mathrm{C}\right)$
$\operatorname{Tmin}\left({ }^{\circ} \mathrm{C}\right)$

MSLP (hPa)

Ashcroft et al. 2014. anomalies relative to 1910-1950 and reset to zero

Prolonged wet and dry periods, 1835-2012

The data are now publicly available

zenodo

Research. Shared

Dataset Open access

Southeastern Australian rescued observational climate network, 1788-1859

Ashcroft, Linden; Gergis, Joelle ; Karoly, David
(show affiliations)
Historical meteorological observations for southeastern Australia, covering 1788-1859. The dataset contains digitised versions of 38 sources of historical temperature, rainfall and pressure information for the southeastern Australian region. It also contains monthly and seasonal anomalies of southern and eastern SEA climate variability for 1788 to 1859. This dataset was developed as part of the South Eastern Australian Recent Climate History project (SEARCH, www.climatehistory.com.au).

Note: A full description of the dataset and its development has been published in Geoscience Data Journal:

Publication date:

08 December 2013
DOI
DOI 10.5281/zenodo. 7598
Keyword(s):
climate Australia 19th century meteorological
observations temperature atmospheric pressure minfall Sydney

Ashcroft, Gergis and Karoly. 2014. A historical climate dataset for southeastern Australia, 17881859. Geoscience Data Journal, 1(2): 158-178, DOI: 10.1002/gdj3.19.

Ashcroft, Gergis and Karoly. 2015. Long-term stationarity of El Niño-Southern Oscillation teleconnections in southeastern Australia. Climate Dynamics, DOI: 10.1007/s00382-015-2746-3

3\% Minconclusions
 2.6: 129,60630.0

1. To improve our understanding of past, present and future climate

2. Continuous data back to 1828, patchy observations back to 1788

3. They are good enough to look at year-to-year climate variability

4. Lots!

5. Explore regional and hemispheric teleconnection stability, extreme events, agreement with proxy data, find more data, etc., etc...

Any and all questions welcome!
lindenclaire.ashcroft@urv.cat | @lindenashcroft

METEO-Cert: Acceptance Procedure for Automatic Weather Stations

Joël Fisler, Marlen Kube \& Bertrand Calpini (MeteoSwiss)

$10^{\text {th }}$ EUMETNET Data Management Workshop
St. Gallen | October 28 ${ }^{\text {th }} 2015$

Partnerstationen MeteoSchweiz

Aktualisierung: Oktober 2015

- Ausland (168)
- Strasse (287)
- Landwirtschaft (168)
- Hydrologie (207)

0		20		40				80
	1	1	1		1	1	1	

1:1'200'000

Procedure

Pre-Analysis
(Auditor)

Audit on site

(Auditor \& Operator)

Post-Analysis
(Operator)

Cycle repeated every 5 years!

Auditor = Neutral third-party organization conducting assessment

Quality Labels

Fully compliant All WMO requirements fulfilled

Compliant

 Most requirements fulfilled
Not compliant / Special Site

 Some important WMO requirements not fulfilled! Be aware of the limitations and use data with caution.
METEO-Cert: Report

Information about the installed instruments
What assessed instruments are installed?
Comments about the station or non-assessed instruments

Temperature and Humidity

Sensor
Is the sensor correctly ventilated?
Is the sensor protected and weather-proof?
Accuracy of instrument at 20 C
Accuracy of relative humidity instrument
Measurement height
is the sensor correctly exposed?
Leroy site classification
Station supervision [points]
Frequency of calibration in lab or replacement? [years]
Frequency of comparison measurements or controls on site by ope Frequency of maintenance by Keeper? [week]
Is there a parallel measurement with a second instrument? Is there automatic data control or monitoring?
Post-Analysis: Effective data availability
Post-Analysis: Effective max. downtime of an instrument in 80% of c
Comments

Pressure

Sensor
Is the sensor protected and weather-proof?
Accuracy of instrument at $20^{\circ} \mathrm{C}$ Altitude of pressure sensor [m]
Accuracy of measurement altitude [cm)
Is the sensor correctly exposed?
Station supervision [points]
Frequency of calibration in lab or replacement? [years] Frequency of comparison measurements or controls on site by ope Is there a parallel measurement with a second instrument? Is there automatic data control or monitoring?
Post-Analysis: Effective data availability
Post-Analysis: Effective max. downtime of an instrument in 80% of c Comments

T, RH, p, Wind, Precipitation, Radiation

Not Compliant

Davis: Vantage Pro2 (6153, with fan)	
Yes	2
Yes	2
0.50 K	1
3.00%	2
2.0 m	2
No	0
5	0
6	2
never	0
24 months	2
2 weeks	2
No	0
Yes	2
96%	2
	3 days

Compliant		
Davis: Vantage Pro2 (6153, with fan)		
Yes	2	
1.00 hPa	1	
705.0 m		
100 cm	1	
Yes	2	
3	1	
never	0	
24 months	1	
No	0	
Yes	2	
96%	2	
	3 days	2

Wind
 Sensor

Accuracy of wind speed instrument [\%]
Accuracy of wind direction instrument ${ }^{\circ}$?
Is instrument heating site-appropriate?
Does the sensor measure up to $180 \mathrm{~km} / \mathrm{h}$?
Is the sensor correctly exposed?
Error dependent on roughness and measurement height Measurement height (from ground)
Wind class according to Davenport
Leroy site classification
Leroy site classification
Station supervision [points]
Frequency of calibration in lab or replacement? [years]
Frequency of comparison measurements or controls on site by ope. Frequency of maintenance by Keeper? [week]
Is there a parallel measurement with a second instrument? Is there automatic data control or monitoring?
Post-Analysis: Effective data availability
Post-Analysis: Effective max. downtime of an instrument in 80% of c Comments

Precipitation

Sensor
s instrument designed to work under snow and hail conditions? Is instrument heating site-appropriate?
15 instrument based on tipping-gauge pricinple?
Is instrument
Accuracy [\%]
Accuracy [\%]
Collector size
Measurement height
Is the sensor correctly exposed?
Leroy site classification
Is the instrument on a roof?
Station supervision [points]
Frequency of calibration in lab or replacement? [years]
Frequency of comparison measurements or controls on site by ope. Frequency of maintenance by Keeper? [week]
Is there a parallel measurement with a second instrument? Is there automatic data control or monitoring?
Post-Analysis: Effective data availability
Post-Analysis: Effective max. downtime of an instrument in 80% of c Comments

Not Compliant
Davis: Vantage Pro2 (6153, with fan)

The sensor is on the roof, 2 m above the top
Not Compliant
Davis: Vantage Pro2 (6153, with fan)

Criteria assessed

The quality of a station is influ METEO-Cert does take into summarized in the following

Criteria 1

1. Instrument
2. Siting and Exposure
3. Maintenance and Observer
4. Post-Analysis

In order to be «fully compliant» an instrument has to meet all the requirements listed in the CIMO guide including:

- Achievable measurement uncertainty (CIMO Guide, Annex 1D)
- Ventilation
- Heating
- Protection
- and more...

Criteria 2

1. Instrument
2. Siting and Exposure
3. Maintenance and Observer
4. Post-Analysis

METEO-Cert includes the following criteria:

- CIMO Siting Classification (CIMO Guide, Annex 1B)
- Measurement Height
- Correct station exposure (CIMO Guide, Annex 1C)
- Rain gauge not mounted on roof
- and more...

Criteria 3

1. Instrument
2. Siting and Exposure
3. Maintenance and Observer
4. Post-Analysis

METEO-Cert includes the following criteria:

- How often are instruments calibrated (in lab)
- How often does operator do control measurements on site
- How often is maintenance by warden done
- Is there an automatic data control?
- Is there a parallel measurement?
(At least three criteria should be fulfilled to be fully compliant)

Criteria 4

1. Instrument
2. Siting and Exposure
3. Maintenance and Observer
4. Post-Analysis

Using one year of data two criteria are assessed:

1. Data availability: How complete is the data?
2. Timeliness: How fast is the data delivered?

Results

A total of 526 instruments (mounted on 113 stations) were inspected by METAS from 2013 to July 2015:

Operator	2013	2014	$\mathbf{2 0 1 5}$	Total
MeteoSwiss	101	148	72	321
Partner	90	102	13	205
				526

Results: Overall for 526 instruments

Example 1 "Not Compliant": Temperature and Wind at PSI

Example 2 "Not Compliant": Rain, Wind and Radiation in Stabio

Example 3 "Not Compliant": Temperature at Weissfluhjoch

Example 4 "Fully Compliant"

Conclusions

The acceptance procedure METEO-Cert...

- works! \rightarrow Meaning: It delivers meaningful results
- is objective and reproducible
- led to the improvement/relocation of MeteoGroup stations
- generates metadata that is stored in the MeteoSwiss DataWareHouse (DWH) and can be used by applications
- will be integrated in the MeteoSwiss data retrieve tools
- will be an important source of information for future generations if 5-year-cycle is kept up ()

Appendix

Additional results

Results: Data availability

Results: Timeliness

Results: Measurement Height

Results: CIMO Siting Classes

Results: Instrument accuracy (according to manufacturer)

But correct heating is sometimes an issue with partner stations!

Results: Maintenance and Observer

Austrian's Developments during the last two years!

Adler Silke, Auer Martin, Lipa Wolfgang

Albenberger Joachim, Fritz Alexandra, Fürst Hermine, Galavics Hermann, Jensen Michael, Lang Gerald, Lechner Wolfgang, Mandl Alexander, Rubin Verena, Teuschler Daniela, Zach-Hermann Susanne

ZAMG
Zentralanstalt für Meteorologie und Geodynamik

Overview

- Annual data report = Yearbook
- KSE - Klima-Synop-Entry - meteorological observation

- DCT - Data Correction Tool - historical data

- AQUAS - Austrian Quality Service - online data
A@UAS

Yearbook

Old version:

- manual , many individual programs, very time consuming
- Excel VBA
- start of programs until whole datasets of all stations of a year were checked
- delay of two-three years

New version:

- runs automatically, only five minutes
- Python
- program runs twice a year or as necessary
- use data of all stations end level checked (typ=6 for 365 days)
- daily report, monthly report, annual report, phenological report
- currently data are available from 1992 until 2014
ZAMG
Zentralanstalt für
Meteorologie und Geodynamik

Yearbook

2014 -	Monatsauswertung
VJänner	QGlobalstrahlung
VFebruar	Luftdruck und Bewölkung
VMärz	VLufttemperatur
VApril	Duftfeuchte
VMai	TNiederschlag
VJuni	\square Wind
VJuli	Erdbodentemperatur
VAugust	Besondere Erscheinungen
VSeptember	$\square 5 \mathrm{~cm}$ Lufttemperatur
VOktober	\square Sonnenscheindauer
\checkmark November	
VDezember	Alle

Stationssuche

Burgenland	,
Andau (T)	
Bad Tatzmannsdorf (T)	
Bernstein (T)	
Bruckneudorf (T)	
Eisenstadt/Nordost (T)	
Güssing (T)	
Kleinzicken (T)	
Lutzmannsburg (T)	
Mattersburg (T)	
Neusiedl/See (T)	
Rechnitz (T)	
Wörterberg (T)	
Niederösterreich	
Allentsteig (T)	

TAWES (T : : Teilautomatische Wetterstation
Beobachtung (B): manuelle Klimabeobachtung
(Bewölkung, Niederschlag, Schnee)
Doppelte Einträge weisen auf Übergänge durch
Stationsverlegung oder Sensorenumrüstung hin!

OHTML Darstellung
OExcel CSV Datei
OPDF Datei

Erstellen

ZAMG
Zentralanstalt für
Meteorologie und Meteorologie u
Geodynomik

Yearbook

HTMLformat

Aktuell	Wetter	Klima	Umwelt	Geophysik	Forschung	Produkte	fracebook	
Klima / Klimaübersichten / Jahrbuch								28.10.2015
Folie 5								

Stationsinformationen Wien Hohe Warte

Stationsname	Stationstyp	Bundesland	Geogr. Breite (${ }^{\circ}$)	Geogr. Länge $\left({ }^{\circ}\right)$	Höhe (\mathbf{m})	Aktiv seit	Lage (grob) - Lage (fein)
Wien Hohe Warte	Tawes	W	48.2486	16.3564	198	01 1993	Anhöhe- Ebene

$1 \quad \square \mathrm{II}$

Yearbook

4	1	2	3		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1																			
2	Monatsauswertung																		
3																			
4																			
5	Station	Breite	Länge	Höhe		Lage (grob)	Lage (Fein)	Kapitel	Parameter	Jän. 14	Feb. 14	Mär. 14	Apr. 14	Mai. 14	Jun. 14	Jul. 14	Aug. 14	Sep. 14	Okt. 14
6	Wien Hohe V	48,2486	16,3564		198	Anhöhe	Ebene	Niederschlą	Monatssumr	8	21	12	66	189	33	91	110	109	37
7	Wien Hohe V	48,2486	16,3564		198	Anhöhe	Ebene	Niederschlą̣	maximale 24	4	6	5	17	62	16	25	40	30	12
8	Wien Hohe V	48,2486	16,3564		198	Anhöhe	Ebene	Niederschlą̣	maximale Ta	2	1	0	0	0	0	0	0	0	0
9	Wien Hohe V	48,2486	16,3564		198	Anhöhe	Ebene	Niederschlą	Tag der maxi	21	12	23	24	24	29	30	23	11	17
10	Wien Hohe V	48,2486	16,3564		198	Anhöhe	Ebene	Sonnenschei	Monatssumr	62	87	218	203	231	304	268	216	154	95
11	Wien Hohe V	48,2486	16,3564		198	Anhöhe	Ebene	Sonnenschei	Summe der	24	32	61	52	51	67	58	51	42	29
12	Wien Hohe V	48,2486	16,3564		198	Anhöhe	Ebene	Besondere E	Tage mit Nit	2	5	4	10	12	4	11	9	7	7
13	Wien Hohe V	48,2486	16,3564		198 A	Anhöhe	Ebene	Besondere ET	Tage mit Nie	0	0	0	2	6	1	3	4	5	1
14	Wien Hohe V	48,2486	16,3564		198	Anhöhe	Ebene	Besondere ET	Tage mit Sch	3	0	0	0	0	0	0	0	0	0
15	Wien Hohe V	48,2486	16,3564		198	Anhöhe	Ebene	Besondere ET	Tage mit Sch	1	0	0	0	0	0	0	0	0	0
I + + M ZAMG_Jahrbuch \% \%												11			IIII	-			\cdots
	eit 9																回田 10	Θ	(+) .

XLS-File
 or
 PDF-File

ZAMG Wien Hohe Warte

Niederschlag													
Parameter / Monat	Jänner	Februar	März	April	Mai	Juni	Juli	August	September	Oktober	November	Dezember	Jahr
Monatssumme des Niederschlags (mm)	8	21	12	68	189	33	91	110	109	37	34	43	753
maximale 24h-Niederschlagssumme (mm)	4	6	5	17	62	16	25	40	30	12	14	10	62
maxi male Tagesschneehöhe (cm)	2	1	0	0	0	0	0	0	0	0	0	6	6
Tag der maximalen Niederschlagssumme	21	12	23	24	24	29	30	23	11	17	7	1	
Sonnenscheindauer													
Parameter / Monat	Jänner	Februar	März	April	Mai	Juni	Juli	August	September	Oktober	November	Dezember	Jahr
Monatssumme der Sonnenscheindauer (h)	62	87	218	203	231	304	268	216	154	95	55	75	1968
Summe der Sonnenscheindauer (\% der maximal möglichen)	24	32	61	52	51	67	58	51	42	29	21	30	46

Besondere Erscheinungen													
Parameter / Monat	Jänner	Februas	März	April	Mai	Juni	Juli	August	September	Oktober	November	Dezember	Jahr
									7			$\square \square^{11}$	

KSE: climatological observation

RSE

- Online form for climatological observations
- Observation pre-check
- Inner consistency
- Consistency with measurements
- Feedback for corrections or confirmations
- Substitution of paper reports

KSE: climatological observation

Example: checking for inner consistency

Austrian Development

DCJ

DATA CORRECTION TOOL

tmin	erdmin	t7	${ }^{1} 14$
. 72	. 79	. 70	-20
-108			-40
-134			-69
-80			-88
-117			. 85
-103	-101	-101	-67
-131	-134	-129	. 80
-111	-110	-110	-89
-111	-124	-110	-53
- -1J	-15t	-1.10	23
-小IJ	- JJ0	-1/0	82

 Meteorologie u
Geodynomik

DCT - Data Correction Tool

- Development started November 2012 -> operational since November 2013
- database-editor for checking offline data (correct hourly and daily values)
- makes realtime calculations (monthly values)
- control- and informationsystem
- displays graphics and station map
- includes station quality control

- check and learn control
- 130 checking criteria separated in 6 processes (completeness check, climatological check, temporal consistency check, inner consistency check, spatial consistency check, statistical check)
- oberserved data also be checked with DCT

Austrian Development

DCT - Data CorrectionTool

28.10.2015

Folie 11

- DCT - Data Correction Tool

DCT - station quality control

Stationsqualität

QF prüfen

Daten:
wird nicht beobachtet keine Einträge vorhanden weniger als ganzes Monat

Bewertung:
wird nicht bewertet
schlechte Bewertung
Bewertung nicht vorhanden
28.10.2仿5 keine Bew. möglich
bereits DCT geprüft / bereits DCT geprüf /
Bewertung vorhanden

	Tir/Vbg - 201504		Bearbeiter		P		ATE	N	BEWERTUNG																				
	$\begin{aligned} & \stackrel{\otimes}{\xi} \\ & \underset{\sim}{\mathbf{0}} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 0 \\ \text { 言 } \end{array}$																					$\begin{array}{\|c} \text { C } \\ \text { D } \end{array}$						
8805	ACHENKIRCH	1	Tirol	6	E	30	30	30	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3	3	3	0			2,94
12015	ALPBACH	1	Tirol	5		30	30			3	3			3	3				3				3		3	3			3,00
12016	ALPBACH	1	Tirol	5		30		0				2	$2{ }^{5}$	eoba	cht	ni	ht	ehr		3	3	2		2					2,22
14801	BRENNER	1	Tirol	2		30		0				1	1 n	euer	B.	esuc	ht			1	1	1		1					1,00
14802	BRENNER	1	Tirol	6	E	30	30			3	3								β				3		3	3			3,00
17320	BRUNNENKOGEL	1	Tirol	5		30	30			3	3								-										3,00
11602	EHRWALD	1	Tirol	5		30		30				3	3							3	3	2		3					2,78
11603	EHRWALD	1	Tirol	5		30	30			3	3			3	3				3				3		3	0			3,00
17002	GALTUER	1	Tirol	5		30	30			3	3			3	3				3				3		3	0			3,00
17003	GALTUER	1	Tirol	5		30		30				3	3			2	3	3		3	3	3		3					2,89
14305	GALZIG	1	Tirol	6	E	30	30	30	0	3	3	2	2	3	3		3		3	3	3		3		3	0			2,83
15005	GERLOS/DURLASSBODEN (MT)	1	Tirol	5		30	30			3	3								3										3,00
12215	HAHNENKAMM-EHRENBACHHOEHE	1	Tirol	6	E	30	30			3	3			3	3				1	3	3		3		3	0			2,78
14602	HAIMING	1	Tirol	5		30		30				3	3			3	3	3		3	3	2		2					2,78
14603	HAIMING	1	Tirol	5		30	30		3	3	3			3	3				3				3		3	0			3,00
14912	HINTERTUX (OE3)	1	Tirol	5		30	30		0	3	3			3	3				3						3				3,00
12351	HOCHFILZEN	1	Tirol	5		30	30			3	3			3	3				3				3		3	0			3,00
12352	HOCHFILZEN	1	Tirol	5		30										3	3			3	3								3,00
11401	Holzgau	1	Tirol	5		30		30				3	3			2	3	3		3	3	2		3					2,78
11402	Holzgau	1	Tirol	5		30	30		3	3	3			3	3				3				3		3	0			3,00
14512	IMST	1	Tirol	5		30		30				3	3			3	3	3		0	0	2		2					2,71
14513	IMST	1	Tirol	5		30	30		3	3	3			3	3				3				3		3	0			3,00
11800	INNSBRUCK-FLUGPLATZ	1	Tirol	5		30		30				3	3			3	3	3		3	3	3		3					3,00
11804	INNSBRUCK-FLUGPLATZ	1	Tirol	5		30	30	30	3	3	3			3	3				3				3		3	0			3,00
11803	INNSBRUCK-UNIV.	1	Tirol	5		30	30	30	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3	0			2,94

Austrian QUAlity Service

Current status and Motivation

Met. Network TAWES
Met. Network TAWES
Climatological observations
???
NWP or Nowcasting Systems
synoptic

QualiMet (DWD)
KSE + manual control
???
???

Austrian QUAlity Service

Current status and Motivation

Met. Network TAWES
synoptic
Met. Network TAWES
Climatological observations

AQUAS

climatology climatology
???
???

Austrian Quality Service

New requirements

- Real-time testing
- Arbitrary data structures (non-standard networks)
- Adaptable check-ups
- Traceable and reversible data changes
- Centralized testing
- Distributed Correction (local experts)
- Web editor for manual data corrections

Solution for a small NMS with decreasing human resources

Austrian Quality Service

System specifications

- data base: PostgreSQL
- Kernel: C++
- check-up: PYTHON3 functions
- production: PYTHON3 functions
- manual control: play! framework

Austrian Quality Service

timetable

2012 Requirements analysis, System specifications/
2014 Prototype/
2015 Prototype enhancements/
2016 Beta Testing, Configuration
2017 Operational Service

Austrian Quality Service

web editor (work in progress)

- Multi window elements:
- Data tables
- Data time series
- Data maps
- Radar, Satellite, ...
- Synchronized display
keep it small \& simple

Outlook

AQUAS:

- 2016 Beta Testing, Configuration
- 2017 Operational Service

Meta Data:

- Consolidation of meta data

Climate DataRescue:

- step by step

Thanks for your attention!

QualiMET 2.0

The new Quality Control System of Deutscher Wetterdienst

Reinhard Spengler
Deutscher Wetterdienst
Department Observing Networks and Data
Quality Assurance of Meteorological Data
Michendorfer Chaussee 23
D-14473 Potsdam
Tel.: +49 (0)69 8062-5200
E-mail: reinhard.spengler@dwd.de

Overview

1. Background of planning and creating QualiMET 2.0
2. Difference between QualiMET 1.3 and QualiMET 2.0
3. Decision tree \& usage of remote sensing data / nowcasting data
4. Calculation of climatological values
5. Co-operation with other NMSs

Background of planning and creating QualiMET 2.0

\rightarrow The previous system has been in operation for about 15 years.
\rightarrow We had many human resources for visual observations and for operating interactive QC procedures.
\rightarrow DWD decided to run a fully automated observing network as of 2020.
\rightarrow Interactive QC is currently distributed to seven regional offices
\rightarrow Future: one central QC group
\rightarrow Human QC takes to much time and is often biased by subjective judgement.

The previous system QualiMET 1.3

The new system QualiMET 2.0

Decision tree \& usage of remote sensing / nwc data (1/6)

\rightarrow To be continued: 4 levels of Quality Control

1. Real-time at station site (fully automated)
2. Real-time at central office (24/7, semi-automated)
3. Non real-time at central office (\rightarrow max. 3 days)
4. Climatological Quality Control $(\rightarrow 1$ year)
\rightarrow To be continued: 5 steps of Quality Control
5. Completeness, availability
6. Climatological limits
7. Temporal consistency
8. Internal consistency
9. Spatial consistency

Decision tree \& usage of remote sensing / nwc data (2/6)

\rightarrow Usage of satellite data (cloud cover, cloud type, cloud mask, radiation, sunshine duration, etc.) at levels 2,3 and 4 to check hourly, daily and monthly values

- to decide if available data is acceptable
- to get substitute data to correct inaccurate data
- to get substitute data to close gaps in time series
\rightarrow Usage of radar products at levels 2 and 3 to check hourly and daily values
- in the same way as satellite data ...
\rightarrow Usage of station site classification (CIMO) and other metadata
\rightarrow example on following slide

Decision tree \& usage of remote sensing / nwc data (3/6)

- Example: sudden drop in temperature 5 cm above ground

Weather conditions

- no clouds
\rightarrow full sunshine
- no precipitation
- nearly calm
- ...

Decision tree \& usage of remote sensing / nwc data (4/6)

- Example: sudden drop in temperature 5 cm above ground

Decision tree in previous system

\rightarrow Drop of temperature too large!

Decision tree \& usage of remote sensing / nwc data (5/6)

- Example: sudden drop in temperature 5 cm above ground

Decision tree in future system

\rightarrow Drop of temperature too large!

data correc

flagging (end)

Decision tree \& usage of remote sensing / nwc data (6/6)

- Example: sudden drop in temperature 5 cm above ground

Result

- Drop in temperature was caused bei shadow of a radio tower (see picture)

Remote sensing / model data

- Check-algorithms for precipitation by using radar products

Remote sensing / model data

- spatial Check of daily precipitation with a new linear model

- Information from neighboring station (considering dataset of the last 10 years)
- Search / identify of suitable predictors
- Interpolation of Data into a grid of 1 km

Results from Sensor calibration checks

- should these data be considered in QA of time series?
\rightarrow Maintanance interval of wind-sensor is 12 months
\rightarrow The re-calibration check detects an non-acceptable deviation in wind-speed
\rightarrow How should we deal with such a result relating to the time series, especially of climatological data ???

Calculation of climatological values

\rightarrow All climate data are calculated using data sets from the synoptic stations.
\rightarrow This means that QC is based on data with the highest possible temporal resolution: 1-minute data, 10-minute data, ...
\rightarrow Any change in high temporal resolution data will automatically lead to adaptation of the climate data (possible for up to 30 days back)
\Rightarrow A quality flag is assigned to each measurement value. During the calculation of climate data, this information is passed on to the condensed values.
\rightarrow The concept of data condensation and quality flagging will be expanded until 2017 to be applicable to the new procedures by using remote sensing and model data.
\rightarrow In future, all users of the data will see whether the values are original data or have been corrected or added.

Co-operation with other NMSs

\rightarrow The new developments to the method and software require intense coordination, also at international level.
\rightarrow For this reason, we have intensified our contacts to MeteoSwiss and ZAMG during 2014.
\rightarrow I would be very pleased if we could work together on improving our procedures for the quality control of meteorological data and data management.

Thank you very much for your attention

Are there any

questions?

Three Information Sources for Quality Control

Christian Sigg - christian.sigg@meteoswiss.ch
Valentin Knechtl - valentin.knechtl@meteoswiss.ch 10th EUMETNET Data Management Workshop, 2015

In a Nutshell

We build QC tests from three sources of information:

1. Relative frequency of occurrence Principle: "Rough errors are rare" Classical rule: magnitude limit tests

Model: outlier detection based on density estimation

Schölkopf et al. (2001)

$$
\hat{p}(\mathbf{x})<\varepsilon
$$

+ efficient and low FDR for $p(x)$ or $p(\boldsymbol{x})$ - high FDR for $p(x, y)$

In a Nutshell

2. Historical treatment

Principle: "Model imitates expert"
Model: classifier that predicts discrete quality flags

In a Nutshell

3. Relationship to other measurements

Principle: "Errors deviate from prediction" Model: predictive model based on context

Evaluating a QC System

Poster: V. Knechtl, D. van Geijtenbeek and C. Sigg "A Quantitative Approach to Optimize the Quality Control System for Surface Data at MeteoSwiss"

Measuring QC System Performance

	Value not flagged	Value flagged
Value correct	True negative (TN)	False positive (FP)
Value not correct	False negative (FN)	True positive (TP)

Trade-off necessary between benefit (TP) and cost (FP + FN) False discovery rate (FDR): E[FP/(FP+TP)]

1. Relative Frequency of Occurrence

"Rough errors are rare"

Outlier Detection: $p(x)$

Our distributions are typically unimodal -> lower and upper limits:

"Hard" limits:

- Nonsensical: negative precipitation measurements
- Physically impossible: 2 m surface temperature $>50^{\circ} \mathrm{C}$
"Soft" limits:
- Monthly limits based on climatology of station
- Derived from inter-quantile range

Both achieve a low FDR, but have significant number of FNs

Outlier Detection: $p(x)$

Inherently multi-dimensional observations

Time series data

Multi-variate density estimation is hard due to the "curse of dimensionality" Bellman (1961)

One-class classification (OCC) based on SVM Schölkopf et al. (2001)

$$
\hat{p}(\mathbf{x})<\varepsilon
$$

$p(x)$ Example: Regular Case

Margin: 0.30

Margin: 0.13

Margin: 0

p(x) Example: Outliers

Margin: -0.42

Margin: -0.14

Margin: -0.11

Outlier Detection: $p(x, y)$

Rule based: Consistency of different but related measurements

$$
\sum_{60 \min } r c o>50 \min \wedge r r e<0.1 \mathrm{~mm}
$$

Rule seems plausible, but reality is more complex:

Precipitation activity (rco)

Precipitation sum (rre)

Outlier Detection: $p(x, y)$

Model based: one-class classification of daily change in snow depth and fresh snow (2 years, 109 stations)

Treatment of QC Cases

Both consistency rules and density estimators flag all involved values and produce a QC case.

1. Automatic QC
2. Treatment of cases

Schwaegalp (SLF3SW, 1350 m ü. M.)

Consistency tests were developed for this scenario

Only Automatic QC

Schwaegalp (SLF3SW, 1350 m ü. M.)

Automatic QC has to identify the erroneous measurement

2. Historical Treatment

"Model imitates expert"

Bi-Classification: $p(q \mid x, y)$

SVM classifier Cristiannini \& Shawe-Taylor (2000) trained on labels provided by the Institute for Snow and Avalanche Research (SLF):

- true negative
- true positive
- false negative
- false positive

Bi-Classification: $p(q \mid x, y)$

Applied to the same dataset as before:

SVM correctly identifies regions of erroneous measurements.

Label Scarcity Problem

Data is plentiful, but expert labels are scarce.

Two years of labels for snow depth and fresh snow are

- Enough to train a generic model with a good FDR
- Not enough to train station-specific models

3. Relationship to other measurements

"Errors deviate from prediction"

Prediction: $p(x \mid y)$

Regression: point-wise best estimate, e.g. $\mathrm{E}[x \mid y]$

1. Train regression model based on context y

$$
x \approx f(\mathbf{y})
$$

2. Flag based on difference to observation

$$
\varepsilon<x-f(\mathbf{y})<\varepsilon^{\prime}
$$

Phenology Example

Horse chestnut tree at station „Villnachern":

Choice of Context

Trade-off:

- Predictiveness: which measurements show a strong statistical relationship
- Timeliness: which measurements are available at the time of measurement
- Robustness: data problems in context impair prediction
-> Employ multiple models:

1. Based on climatology only
2. Based on context available at time of measurement
3. Based on most predictive context

Data Problems with Context

- How to deal with missing values in context:
- Skip test entierely
- Impute missing predictor
- Errors in context generate FPs:

daily precipitation sums

Errors in the Context

Three approaches to deal with errors in the context:

1. Split the context Gandin (1988)

$$
x \approx f(y, z) \rightarrow x \approx g(y), x \approx h(z)
$$

x can be validated either by y or z :

+ An error in either predictor can be detected
- predictors are treated as independent
-> loss of power for the test

Errors in the Context

2. Train OCC for the predictors

$$
\hat{p}(y, z)
$$

Apply test if the predictors are accepted by the OCC

$$
\hat{p}(y, z)>\delta \rightarrow \varepsilon<x-f(y, z)<\varepsilon^{\prime}
$$

+/- OCC is a separate step, independent of the regression model

Errors in the Context

3. Predict the full distribution instead of a point estimate:

$$
\mathrm{E}[x \mid y, z] \rightarrow \hat{p}(x \mid y, z)
$$

For example using Gaussian process regression

Rasmussen and Williams (2006)

+ Posterior variance is high for unlikely (y, z)
+ Single integrated model
- Model complexity

Conclusions

Summary

We use three information sources for quality control:

1. Relative frequency of occurrence: density estimation + low FDR for $p(x)$ or $p(x)$ - high FDR for $p(x, y)$
2. Historical treatment: classification

+ identifies erroneous measurement - label scarcity

3. Relationship to other measurement: regression

+ no labels needed!erroneous or missing context

Thank you for your attention.

Bibliography

Bellman, R. (1961). Adaptive Control Processes: A Guided Tour. Princeton University Press.
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
Cristianini, N., \& Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernelbased learning methods. Cambridge University Press.

Gandin, L. S. (1988). Complex Quality Control of Meteorological Observations. Monthly Weather Review, 116(5), 1137-1156.

Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., \& Williamson, R. C. (2001). Estimating the Support of a High-Dimensional Distribution. Neural Computation, 13(7), 1443-1471.

Rasmussen, C. E. \& Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT Press.

\boldsymbol{u}^{b}

Identifying and attributing common data quality problems: temperature and precipitation observations in Bolivia and Peru

S. Hunziker ${ }^{1}$, S. Gubler ${ }^{2}$ J. Calle ${ }^{3}$, I. Moreno ${ }^{3}$, M. Andrade ${ }^{3}$, F. Velarde ${ }^{3}$, L. Ticona ${ }^{3}$, G. Carrasco ${ }^{4}$, Y. Castellón ${ }^{4}$, C. Oria Rojas ${ }^{5}$, S. Brönnimann ${ }^{1}$, M. Croci-Maspoli ${ }^{2}$, T. Konzelmann ${ }^{2}$, M. Rohrer ${ }^{2}$
${ }^{1}$ Oeschger Centre for Climate Change Research and Institute of Geography, University of Bern, Bern, Switzerland
${ }^{2}$ Federal Office of Meteorology and Climatology MeteoSwiss, Zürich, Switzerland
${ }^{3}$ Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia
${ }^{4}$ Servicio Nacional de Meteorología e Hidrología de Bolivia, SENAMHI
${ }^{5}$ Servicio Nacional de Meteorología e Hidrología del Perú, SENAMHI

Challenges

- Data availability
- Sparse station network
- Metadata is fractional or missing
- Often severe data quality problems

Challenges

\boldsymbol{u}^{b}

- Data availability
- Sparse station network
- Metadata is frac

INCAPAMPA

Challenges

\boldsymbol{u}^{b}

- Data availability
- Sparse stati

TINQUIPAYA

- Metadata is
- Often sever

Challenges

\boldsymbol{u}^{b}

- Data availahilitı
- Spars
- Metac
- Often

Challenges
 \boldsymbol{u}^{b}

QUIMOME

-

$\begin{array}{ll}- & \\ - & \\ - & 1\end{array}$

2008
2010

Challenges

\boldsymbol{u}^{b}

VILOCO

Challenges

- Data availability
- Sparse station network
- Metadata is fractional or missing
- Often severe data quality problems

Frequently found errors:
> missing temperature intervals
> reduction of variability
> rounding inconstancies
> 20mm precipitation cut
> missing low precipitation values
> untagged rainfall accumulations
> transcription errors

Challenges

- Data availability
- Sparse station network
- Metadata is fractional or missing
- Often severe data quality problems

Frequently found errors:
> missing temperature intervals
> reduction of variability
> rounding inconstancies
> 20mm precipitation cut
> missing low precipitation values
> untagged rainfall accumulations
> transcription errors

Metadata

Station visits to

1. report and assess the actual state of the station
2. reconstruct the station history
3. detect sources of data errors

Metadata

Metadata

BITACORA DE LA ESTACCÓN					
\#	Fecha	Participante(s)	Acción ejecutada	Descripción	
1	$12 / 03 / 2014$	Decker Guzman Zabalaga	Recojo de bitacora	No exite bitácora de la estación.	
2	Noexiste fecha exacta	Lic. Rene Torrez Santalla	Retiro de radiómetro eppley	Aproximadamente hace un año y medio se hizo el retiro de radiómetro.	
3	$20 / 02 / 2014$	Lic. Rene Torrez Santalla	Descarga de datos	Se descargaron los datos de la estación por medio de una computadora conectada al Datalogger	

UNIVERSITÄT

*Notas:
No se tiene un periodo determinado para realizar la intercomparación
La estación meteorológica fue armada por partes y no se tiene el número del modelo de cada parte.

Metadata

VINO_TINTO

Metadata

TIRAQUE

TIRAQUE

Reduced variability in all variables

Urubamba, Peru

universitãt

Reduced variability in all variables

Urubamba, Peru

- Rebellion of the Sendero Luminoso against the Peruvian state (escalating in the early 80s)
- Data gaps and errors are found in many stations in that time
- All parameters affected \rightarrow observer error
- Exact source of error source is unknown

20 mm precipitation cut

\boldsymbol{u}^{b}

AGUIRRE

20 mm precipitation cut

\boldsymbol{u}^{b}

Low precipitation gap

QUIABAYA

Low precipitation gap

Untagged rainfall accumulations

\boldsymbol{u}^{b}

SAN_CALIXTO

Untagged rainfall accumulations

SAN_CALIXTO

1940	1950	1960	1970	1980	1990	2000	2010

Untagged rainfall accumulations

Untagged rainfall accumulations

PRCPTOT: annual total wet-day precipitation

Untagged rainfall accumulations

\boldsymbol{u}^{b}

SDII (Simple Daily Intensity Index): annual total precipitation divided by the number of wet days in the year

Error correction

Progreso

Error correction

Progreso

Error detection

\boldsymbol{u}^{b}

- Programs often create plots for visual quality control, e.g. RClimDex:

Station: 000778, 1994~2003, tmin

Error detection

\boldsymbol{u}^{b}

- Quality control is included in many programs
- Programs often create plots for visual quality control:
E.g. RClimDex:

Progreso

Conclusions

- High priority to QC before analyzing data from Bolivia and Peru
- Ideally, metadata should be checked before using the data
- Visual QC is very helpful to detect patterns
\rightarrow use point instead of lines plots
- Reporting errors and observations in data
\rightarrow create additional metadata
- Knowing the source of the error allows to
> possibly correct the error
> decide if the error affects the data application of interest

The challenge of porting scientific results to operational applications

Rebekka Posselt*, Rebecca Hiller, Mark A. Liniger

The challenge of porting scientific results to operational applications

Rebekka Posselt*, Rebecca Hiller, Mark A. Liniger
Thanks to work by: Christoph Frei, Sophie Fukutome
*rebekka.posselt@meteoswiss.ch

In the beginning

The task:

- Analyze the past climate
- Monitor the current climate
- Predict the future climate

Therefore, climate researchers

- Develop new methods
- Create new visualizations
to deliver climate products
- Understandable
- Usable
by the climate information customer.

And then?

- «Leave it on the shelf to gather dust»?
- Port it to operational applications

Report generation

- Direct, automatic output
- Uses Sweave (\rightarrow LaTeX) with embedded R-Code
- Implementation of the official layout (Latex class)
- Statistical analysis via embedded R-Code
- Customizable (heading, text, contact info, ...)
- Automatic formatting (header, footer, ...)

Einordungsparameter: Niederschlag (rre002d0) 2-Tagessumme 0540 FT - 48 h

Ereignisdatum: 29. April 2015 (data_20150429_forecast_48.csv) Referenzperiode: 1. Januar 1961 bis 31. Dezember 2010
Die Extremwertstatistik dient der Einordung von ausserordentlichen Ereignissen und kann deshalb nur for seltene Ereignisse mit einer Jâhrlichkeit > 10 Jahre verwendet werden. Deshalb erfolgt die Einordunung für hâufigere Ereignisse anhand der emprischen Verteilung der Werte innerhalb der Referenzperiode. Die Wiederkehrwerte sind mit grossen Unsicherheiten behaftet und werden deshalb nur als Klassen ausgegeben, die die Grobssenordung eines Ereignis quantifizieren.

Legende
Wiederkehrwert aus empirischer Verteilung (Emp. WK)

| <1.1 | $1.1-3$ | 2.5 | $3-8$ | $5-10$ | $8 \cdot 12>10$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Wiederkehrwert aus Extremwertstatistik (EVA WK)

| <10 | $10-20$ | $20-30$ | $30-50$ | $50-100$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

Nord- und Mittelbünden

Station	Hohe [m 0.M.]	aktueller Wert [mm]	Emp. WK	EVA WK
[Jahre]	[Jahre]			
Andeer (AND)	987	120	$3-8$	<10
Bad Ragaz (RAG)	496	120		$20-30$
Bivio (BIV)	1772	70	$1.1-3$	<10
Chur (CHU)	556	120		$10-100$
Davos (DAV)	1594	100		$10-20$
Disentis/ Sedrun (DIS)	1197	120	$5-10$	<10
llanz (ILZ)	698	120		$10-20$
Latsch (LAT)	1408	70	$1.1-3$	
Vals (VIS)	1278	120	$2-5$	<10
Weissfluhjoch (WFJ)	2691	120	$8-12$	<10

Ostlicher Alpennordhang

Station	Hohe [m 0.M.]	aktueller Wert $[\mathrm{mm}]$	Emp. WK	EVAWK
[Jahre]	[Jahre]			
Ebnat-Kappel(EBK)	623	100	$1.1-3$	<10
Elm (ELM)	958	120	$5-10$	<10
Glarus (GLA)	517	100	2.5	<10
Santis (SAE)	2502	120	$1.1-3$	<10
Vaduz (VAD)	457	120	>10	

Gridded Datasets

Monthly Mean Temperature (degC) Jan 2015

http://www.meteoschweiz.admin.ch/home/klima/gegenwart/monats-und-jahreskarten.html

- User-dependent visualizations
- Less information for Internet \rightarrow Common user
- Additional information for internal use (e.g., used for quality control) \rightarrow Expert user

Climate Indices: Ongoing work

- Need for unification!
- Several tools @ MeteoSwiss used to calculate climate indices for station data, gridded data, climate scenarios

- CRAN-package "climdex.pcic": contribution and collaboration

And then?

- «Leave it on the shelf to gather dust»
- Port it to operational applications

Requirements on operational tools

The solution @ MeteoSwiss

CATs \rightarrow Climate Analysis Tools

CATs \rightarrow collection of «R»-packages
$\mathbb{R}=$ open-source statistical software

CATs provide the framework for

- Coordinated development
- Automatic and/or individual production
- Easy maintenance
of a wide variety of climate products.

Common structure

Programm call (\rightarrow argument names and formatting)

- Easy to use, understood one \rightarrow understood all

CAT/Package structure (\rightarrow Input preparation, Data retrieval, Data analysis, Output)

- Enables coordinated and easy development
- Easy maintenance

General functionalities in CAT.Helper Libraries

- Basic functionality (data retrieval, color tables, labeling)
- Advanced, more scientific functionality (climate indices, Verification Skill scores)

Common Structure

R-Base

(http://www.rproject.org/)

Documentation

```
pheno.longts {phenopoll}
Long phenological records
Description
Create a plot of long phenological records
Usage
pheno.longts
    parameter = "kjaesc09"
    station = "PGE"
    datafile = "dwh"
    gimage = "aesculus"
    tart.year = 1800,
    nd.year = "current"
    lim = c(-5, 120)
    title = NULL,
    add.years=TRUE,
    filter.col = "red",
    filter.max.gap=5,
    line.col = "darkblue",
    outpath="current"
    languages = "G"
)
Arguments
- Comprehensive documentation required
- Meaningful examples and Tests necessary
- Recommended packages:
- «roxygen» for Documentation
- «testthat» for Testing

Description
Create a plot of long phenological records

Usage
heno. longts
\(3 C 09\) "
datafile = "dwh"
gimage = "aesculus",
start. year \(=1800\)
n.year 5 curren
itle = NULL,
filter.col = "red"
ine.col = "darkblue
languages \(=\) "G"
rguments
-五
station
datafile
bgimage
start.year
end. year

\section*{Gl+- A version control system}
- Change tracking:
- Who changed What, Where, and When
- Supports collaboration between developers
- Code archive
- Trigger for automatic installation on the servers

\section*{Automated production \& monitoring}
- Job scheduling via Linux-intern «crontab»
- Manage the automatic production for Internet, Intranet, Archive, ...
- ~20 CATs run as «cronjobs» at different times (daily, monthly, seasonal, yearly, special, ...)
- Monitoring by capturing «errors»
- Within the «cronjob» scripts
\(\rightarrow\) Trigger of Fail-Emails

\section*{Server architecture}
- Development server
\(\rightarrow\) Reserved for developing CATs
- Interactive server
\(\rightarrow\) Accessible by all interested employees
\(\rightarrow\) Individual production
- Production server
\(\rightarrow\) Reserved for automated production
\(\rightarrow\) Redundant layout (Main + FailOver)
- All servers provide the same environment (OS, libraries)
- Maintenance and administration by IT-Department

\section*{Requirements on operational tools}


\section*{Reproducible}
- Code archive
- Scriptable
- Documented

\section*{Maintainable}
- Common structure
- Standardization
- Single implementation

\section*{User friendly}
- Documented
- Customizable
- Easy access


\section*{Content}

\section*{1. Comparison trend in national datasets \&} global collections
2. Global temperature datasets
3. Statistical homogenization
4. Physical understanding historical transitions
5. Other changes in the climate system

\section*{Well-homogenized national datasets}
- Australia, Austria, France, Hungary, Netherlands, Israel, Italy, Slovenia,
Spain and Switzerland
- Compared global collection
- Annual mean averaged over same countries
- Berkeley Earth Surface Temperature (BEST)
- GHCNv3, GISS
- CRUCY, CRUTEM4
- National datasets are expected to be better
- More data: better correlated references
- More metadata: station history
- More care and better methods

Difference (national - global) BEST (1800)


Difference - BEST (1911)


Difference - GHCN \& GISS (1911)


Difference CRUTEM \& CRUCY (1911)


Difference - BEST (1961)


Difference - GHCN \& GISS (1961)


Difference - CRUTEM \& CRUCY (1961)


All collections 1901-2009


All collections 1961-2009


Seasonal cycle - all collections (1901-2009)


Seasonal cycle - all collections (1961-2009)


\section*{Content}
1. Comparison trend in national datasets \& global collections
2. Global temperature datasets
3. Statistical homogenization
4. Physical understanding historical transitions
5. Other changes in the climate system

Inhomogeneities in GHCNv3



Averaging: Zeke Hausfather Data: GHCNv3

\section*{Regional trend bias correction}
- A small bias in breaks can lead to large-scale temperature trend errors
- Correction with composite reference
- Reference has the same bias

\section*{Undercorrecting trend biases}
- ANOVA decomposition
- Regional climate signal for all stations
- Step function per stations
- Noise to be minimized
- Computing the adjustments is a regression
- Predictors: break positions (+ station temps)
- Predictands: adjustments (+ regional signal)
- Numerical test (all breaks are known) - ANOVA adjustments are unbiased (but noisy)
- Imperfect predictors (break positions)
- Break variance is underestimated
- Trend biases will be undercorrected
- All breaks detected, but error in position of 2 year:
- \(18 \%\) of trend bias remains
- Artificial, but gives idea of the order of magnitude

\section*{Break detection and SNR}

\section*{Trend uncertainties}
- Benchmarking gives qualitative idea of uncertainties
- HOME: 10\%, NOAA: 90\%
- HOME: no explicit large-scale trend bias (thus very small)
- Several caveats of unknown importance
- HOME: size of the breaks \(2 x\) too large
- NOAA: breaks implemented as random walk
- High network density USA \& Europe
- Much of the world and periods SNR will be smaller
\(>\) Need better validation (ISTI) and numerical studies

\section*{Conclusions}
- Trend difference between well-homogenized datasets and global collections
- Land surface temperature
- If there is a cooling bias in raw observations:
- Trend error likely undercorrected
- Physical understanding of cooling bias poor
- Transition to Stevenson screens seems undercorrected
- Many other changes in climate system fast

\section*{Future research -} Comparison national \& global data
- Quality categorisation is subjective
- Ask multiple scientists to make a categorisation
- Understand physical reasons for cooling bias
- Also compare seasonal/monthly series
- Timing of changes
- Study the adjustments applied in GHCN
- Timing, station density and climates
- Compare national adjustments to GHCN adjustments
- Comparison on a station level

Future research -
Comparison national \& global data
- Understand trend differences adjustments
- Homogenization methods
- Detection or correction
- Data available as reference / station density
- Break frequency
- Metadata
- Precise date, significance level
- Physical adjustments, adjustment size
- Percentage of confirmed breaks
- Selection of stations
- Averaging:
- Mean reference stations, interpolation, gridding
- National stations or also neighbouring countries

\section*{Future research -} Comparison national \& global data
- More datasets (of any quality level)
- Australia, Austria, Canada, Catalonia, Catalonia, China (MASH, CMA), Croatia, Czech Republic, Estonia, Ecuador, Finland, France, Germany, Greece, Hungary, Ireland, Israel, Italy (Craddock, Toretti), Latvia, Netherlands, Central Netherlands, Norway, Ukraine (long and short), United Kingdom, Portugal, Romania, Russia, Serbia, Slovakia, Slovenia, Spain (AEMET, SDATSv2, ACMANT, MOTEDAS), Sweden, Switzerland
- Greater Alpine Region, Carpathian basin, Central England Temperature, Catalonia.
- More variables
- Precipitation, extreme temperatures

\section*{Future research - Homogenization}
- Need better mathematical understanding of how well large-scale trend biases can be removed
- Numerical understanding: ISTI global benchmarking
- Need better homogenization methods
- Multiple breakpoint methods
- Low signal to noise ratio
- Determination of optimal number of breaks
- Joint detection
- Noise reduction of difference time series
- Apply them to global datasets
- Need to exchange more data \& metadata

\section*{Future research - Physical reasons}
- Understanding of cooling biases is poor
- Reduction radiation errors
- Relocations, better siting
- Irrigation and watering near weather stations
- Large global parallel dataset can help
- ISTI-POST side meeting at 15.00
- Transition to AWS
- Transition to Stevenson screen
- Relocations
- Changes in weather variability and extreme weather - Poster
- Precipitation, humidity, wind(?)

Questions?


Victor.Venema@uni-bonn.de http://variable-variability.blogspot.com/

\section*{Description of the bias introduced by the transition from Conventional Manual Measurements to Automatic Weather Station through the analysis of European and American parallel datasets. (+ Australia, Israel \& Kyrgyzstan)}
E. Aguilar, P. Stepanek, V.K.C. Venema, R. Auchmann, F.D. dos Santos Silva, E. Engström, A. Gilabert, Z. Kretova, J.A. Lopez-Díaz, Y. Luna Rico, C. Oria Rojas, M. Prohom, D. Rasilla, M. Salvador, G. Vertacnik, and Y. Yosefi

Presenting Author: E. Aguilar (enric.aguilar@urv.cat) Center for Climate Change, C3,URV, Tarragona, Spain. See acknowledgements for full institutions list

October-2015. Saint-Gallen.

\section*{IN THIS TALK}
- Motivation.
- POST \& the AWS-Manual transition dataset.
- Results: networkwide; per country; some particular cases.
- Summary, further work.


Jaen Station (Peru)

\section*{MOTIVATION}
- We have inhomogeneities.
- Daily data homogenization needs to be improved.
- Parallel measurements help us to empirically compare the effect of transitions between systems.
- Their analysis contributes to : create realistic benchmarks; validate homogenization; evaluate uncertainty.
- This talk AWS-Manual temperatures < POST-AWS < POST < ISTI
- POST is a Working Group of the International Surface Temperature Inititative (ISTI), which intends to contribute to the creation and delivery of reliable climate services produced with an open and transparent procedures: www.surfacetemperatures.org
- POST works to create a global parallel dataset to enable the study of systematic biases in the national, regional and global records of different Essential Climate Variables (ECVs).

\section*{NUMBER OF STATIONS FOR EACH DATASET (TEMPERATURE, TX, TN, TM, DTR)}

COUNTRY STATIONS DETAILS ON AWS STATIONS
\begin{tabular}{lrl} 
Argentina & 9 & No info available at this point \\
Australia & 13 & Stevenson shelters; AWS are relocations \\
Brazil & 4 & AWS sensors in Young screens \\
Israel & 5 & AWS Campbell/Rotronic (repl. 2005) in Stevenson \\
Kyrgyztan & 1 & Vaisala HMP45C in non-stevenson shelter \\
Peru & 31 & AWS sensors in multiplate shelters \\
Slovenia & 3 & iButton probes in same Stevenson Screen than LIG \\
Spain & 35 & Mixture of Stevenson and non-Stev. (Young type) \\
Sweden & 8 & AWS in multiplate screens (Young Type) \\
USA & 6 & AWS in fan aspirated solar radiation shields \\
\hline
\end{tabular}
- POST is preparing a metadata template to distribute to partners

\section*{QUALITY CONTROL}
- More than 300,000 values checked.
- Set to error: \(|\mathrm{t}|>60^{\circ}\), \(\mid\) AWS-CON \(\mid>10^{\circ} \mathrm{C}\), value of \(|\mathrm{t}|>40 \mathrm{C}^{\circ} \& \mid\) AWS-CON \(\mid\) \(>5, \mathrm{TX}>\mathrm{TN}\).
- Set to very suspect: outliers in temperature and difference (4 IQR).
- Set to suspect: outliers either in temperature or difference (4 IQR).
\begin{tabular}{rrrrrr}
\hline & 1 & 2 & 3 & 4 & 9 \\
\hline tx & 1.19 & 0.01 & 0.02 & 97.80 & 0.98 \\
tn & 0.60 & 0.02 & 0.02 & 98.59 & 0.77 \\
\hline
\end{tabular}

Percentage of values flagged during QC.
1.- Error; 2.- Very Suspect ; 3.- Suspect ; 4 Passed QC; 9 NA.

\section*{BIAS ANALYSIS. FULL DATASET}
- This analysis is run using all the data which was not labelled as error in QC (level > 1 ).
- The median bias in TX and TM is \(0.0^{\circ} \mathrm{C}\), meanwhile it is -0.1 in TN and \(+0.1^{\circ} \mathrm{C}\) in DTR.
- Wishkers indicate spread (1.5 times IQR).

- Even though these results are not representative (different years, different number of values, uneven area coverage, etc.), they show to some extent the cancellation exerted by different sign biases.

\section*{BIAS ANALYSIS. FULL DATASET. SEASONS}
- Cold and Warm seasons have been adapted to each hemisphere (DJF for HS, JJA for HN).
- MAM and SON are labelled as Transition.

- Values are similar to those found for the year-round analysis.
- Warm season shows slightly larger dispersion.

\section*{MEAN BIAS (AWS-Manual) PER STATION. TX, TN.}

Mean values of \(\Delta T X\), AWS-Mannual


Mean values of \(\triangle T N\), AWS-Mannual

sig. \(\mathbf{0 . 0 5} \bigcirc \mathrm{No} \bigcirc\) Yes
\begin{tabular}{crr}
\hline & Negative & Positive \\
\hline No & 6 & 5 \\
Yes & 70 & 35 \\
\hline
\end{tabular}
Significance and Sign
- Most diff. significant. In TN \(2 / 3\) of the series show cooler AWS.

\section*{MEAN BIAS (AWS-Manual) PER STATION. TM and DTR}

Mean values of \(\triangle T M\), AWS-Mannual


Mean values of \(\triangle \mathrm{DTR}\), AWS-Mannual


Sign Negative Positive
Abs. Diff. • 0.5 • \(1.0 \bullet 1.5 \bullet 2.0\)
sig. \(\mathbf{0 . 0 5} \bigcirc \mathrm{No}\) Yes
\begin{tabular}{rrr}
\hline & Negative & Positive \\
\hline No & 5 & 2 \\
Yes & 41 & 68 \\
\hline
\end{tabular}

Significance and Sign
- Most diff. significant. More than \(60 \%\) of AWS show larger DTR.

\section*{BIAS（deg．C）AWS－MANUAL PER COUNTRY}

country 白 \(A R\) 白 \(A U\) 白 \(B R\) 追 \(E S\) 白 \(I L\) 白 \(K G\) 追 \(P E\) 白 \(S E\) 白 \(S I\) 白 \(U S\)
－Different countries \(=\) different results．Eg．Peru shows larger bias in Tx than other countries and Irael shows no bias in DTR．
－More data is necessary to reach more solid conclusions．

\section*{INFLUENCE OF OTHER FACTORS. AUSTRALIA .}

Absolute Mean Bias. Australian Stations

- The plot shows a tendency of the absolute mean bias to grow with increasing distance between sensors.

\section*{PERCENTAGE ABS．AWS－MANUAL＜ 0.5}

country 白 \(A R\) 白 \(A U\) 白 \(B R\) 追 \(E S\) 白 \(I L\) 白 \(K G\) 追 \(P E\) 白 \(S E\) 白 \(S I\) 白 \(U S\)
－Israel（nearly 100\％），Slovenia and Sweden show the larger \％of diffs in a \(|0.5|\) range．Notice larger spread in TN，specially Sweden and Peru．

\section*{EFFECT OF INTERNAL INHOMOGS. ISRAEL (METADATA)}

\section*{Israel made available detailed metadata:}
\begin{tabular}{llll}
\hline Station & Code Man/AWS & Parallel Period & AWS Type \\
\hline Eilat & \(9972 / 9974\) & \(01 / 05 / 2001-08 / 07 / 2002\) & Campbell 107 \\
Eilat & \(9972 / 9974\) & \(09 / 07 / 2002-31 / 05 / 2008\) & Rotronic-MP101 \\
Zefat & \(4640 / 4642\) & \(01 / 02 / 2003-30 / 06 / 2008\) & Rotronic-MP101 \\
Jerusalem & \(6770 / 6771\) & \(01 / 01 / 1996-31 / 08 / 2005\) & Campbell 107 \\
Jerusalem & \(6770 / 6771\) & \(01 / 09 / 2005-29 / 02 / 2008\) & Rotronic-MP101 \\
Kefar Blum & \(8471 / 8472\) & \(01 / 07 / 2005-31 / 03 / 2009\) & Rotronic-MP101 \\
Sedom & \(9570 / 9571\) & \(01 / 01 / 2003-30 / 04 / 2009\) & Rotronic-MP101 \\
\hline
\end{tabular}
- Even more detailed information and pictures was made available by Israel Meteorological Service.

\section*{EFFECT OF INTERNAL INHOMOGS．EILAT（left），JERUSALEM （right），ISRAEL}

－The effect of the sensor change is relatively small in absolute magnitude．
－But some seasons（eg．Eilat，winter，DTN）reverse sings of the median difference after the replacement．

\section*{INTERNAL INHOMOGENEITIES. OBSERVATORIO-EBRO, SPAIN}
- The Observatorio del Ebro, near Tortosa (Tarragona, Spain) is the longest paralell record we have available for Spain.
- The AWS sensors are always located inside the same Stevenson Screen of the LIG manual measurement.
- DTX and DTN bias changes up to \(1^{\circ} \mathrm{C}\), reverses sign and alters seasonality with sensor changes


\section*{EFECT OVER ETCCDI INDICES.TX90p. OBSERVATORIO-EBRO, SPAIN}
- Introduction of AWS affects mean values and also ETCCDI indices. Sensor changes are evident.


\section*{INTERNAL INHOMOGENEITIES. BARCELONA-FABRA, SPAIN}
- Internal changes in Fabra station have a strong effect in the relation between the AWS and the Manual measurements, specially in DTX. (Notice the change in y -axis scale)
- When the AWS sensor is sheltered inside the Stevenson screen, the differences are much smaller and even reverse sign in DTX.
- For DTN, the changes are less dramatic and do not imply a change in sign, but the dispersion of
 the difference series becomes much smaller.

\section*{STRATIFICATION OF THE DIFFERENCES WITH OTHER VARIABLES IN BARCELONA-FABRA}

\section*{Median differences AWS-CON for the third period (AWS in Stevenson)}
\begin{tabular}{lll}
\hline & TX & TN \\
\hline sun \(<=03\) hours & -0.2 & -0.2 \\
sun \(>=10\) hours & 0.0 & -0.2 \\
wind sp. \(<=2 \mathrm{~m} / \mathrm{s}\) & -0.2 & -0.3 \\
wind sp. \(>=6 \mathrm{~m} / \mathrm{s}\) & 0.0 & -0.2 \\
precip \(<=1 \mathrm{~mm}\) & -0.1 & -0.1 \\
precip \(>=5 \mathrm{~mm}\) & -0.2 & -0.2
\end{tabular}
- We intend, if data is available, to stratify the results with other variables / weather types.

\section*{SUMMARY}
- We have presented a dataset of temperature observations for the study of the transition between AWS and Manual observations.
- Although averaged biases over the whole dataset are not remarkable, most individual stations show significant differences.
- These differences vary much between countries and within countries.
- Differences affect not only the mean, but also extremes and ETCCDI indices.
- Instrumentation and sheltering plays a very important role, easily identificable.
- At this point we cannot determine whether different climates imply different biases.
- Other factors such as internal inhomogeneities and distance between the parallel measurements must be taken into account.
- The more data we have, the more solid conclusions we will be able to reach.

\section*{ACKNOWLEDGEMENTS AND FURTHER WORK}
- This study has been possible thanks to the kind contributions of many coauthors and their institutions.
- It will continue under the guidance of POST.
- POST intends compile the largest possible dataset of transition (including AWS - Manual) to understand their effect on climate series.
- POST is your playground. Come and
 play!
- More info about POST: http://tinyurl.com/ISTI-Parallel.
- Interested in joining us? Contact chair, Victor Venema, after EMS at Victor.Venema@uni-bonn.de.

\section*{Thanks for your atention and thanks to:}

\author{
Universitat Rovira i Virgili, Center for Climate Change, C3, Tarragona, Spain, Global Change Research Centre, Czech Academy of Sciences, Brno, Czech Republic, Czech Hydrometeorological Institute, Brno Regional Office, Brno, Czech Republic, University of Bonn, Meteorological Institute, Bonn, Germany, University of Bern, Institute of Geography, Bern, Switzerland, Instituto Nacional de Meteorologia, INMET, Brazil, Swedish Meteorological and Hydrological Institute, Norrköping, Sweeden, Main Hydrometeorological Administration, Bishkek, Kyrgizstan, Agencia Estatal de Meteorología, AEMET, Madrid, Spain, Servicio Nacional de Meteorología e Hidrología del Perú(SENAMHI), Lima, Perú, Servei Meteorològic de Catalunya, Barcelona, Spain, Universidad de Cantabria, Santander, Spain, Slovenian Environment Agency, Ljubljana, Slovenia, Israel Meteorological Service, Tel-Aviv, Israel and Servicio Meteorológico Nacional, Buenos Aires, Argentina, Bureau of Meteorology, Australia for their contributions in terms of data and human resources. \\ With the support of Grant CGL2012-32193, Ministerio de Economía y Competitividad, MINECO, España and FP7-SPACE-2013-1 grand 607193, Uncertainties in Ensembles of Regional Reanalyses (UERRA).
}

\title{
Biases in precipitation records found in parallel measurements
}

\author{
Petr Stepanek (1,2), Enric Aguilar (3), Victor Venema (4), Renate Auchmann (5), Fabricio Daniel dos Santos Silva (6), Erik Engström (7), Alba Gilabert (1), Zoia Kretova (8), Jose Antonio Lopez-Díaz (9), Yolanda Luna Rico (9), Clara Oria Rojas (10), Marc Prohom (11), Domingo Rasilla (12), Mozar Salvador (6), Gregor Vetacnik (13), Yzhak Yosefi (14), Maria de los Milagros Skansi (15)
}

\section*{Content}
- Motivation / POST initiative
- The conventional - automatic precipitation measurements dataset
- Results
- Summary


\section*{Motivation}
- For studying climatic changes it is important to accurately distinguish non-climatic from climatic signals
- This can be achieved by studying the differences between two parallel measurements. These need to be sufficiently close together to be well correlated
- One important ongoing worldwide transition is the one from manual to automated measurements. We need to study the impact of automated measurements urgently because sooner or later this will affect most of the stations in individual national networks
- Similar to temperature series, we study the transition from conventional manual measurements (CON) to Automatic Weather Stations (AWS), using several parallel datasets distributed over EuroAsia and America

\section*{Instrumentation, example from CZ}


MR3H automatic tipping bucket rain-gauge

The METRA 886 rain-gauge

\section*{Parallel Observations Scientific Team (POST)}
- In this talk we deal with the transition from conventional (manual) to automatic precipitation measurements (AWS)
- This is another study in the framework of The Parallel Observations Scientific Team (POST, http://www.surfacetemperatures.org/databank/parallel measurements )
- POST is a Working Group of the International Surface Temperature Inititative (ISTI), which intends to contribute to the creation and delivery of reliable climate services produced with an open and transparent procedures: www.surfacetemperatures.org
- POST works to create a global parallel dataset to enable the study of systematic biases in the national, regional and global records of different Essential Climate Variables (ECVs)

Available datasets for transition between CON and AWS
- Only a few datasets are available so far, so our data base is not global. In this analysis, we will present series from America (Argentina, Brazil, Peru, USA), Asia (Israel, Kyrgyztan) and Europe (Slovenia, Spain, Sweden, Czech Republic).
- Data have been kindly provided by local scientists (see co-authors list). New contributions are expected and more are most welcome.

\section*{Available datasets for transition between CON and AWS}
Country Name ..... Count
AG Argentina ..... 1
BR Brazil ..... 4
CZ Czech Republic ..... 19
IS
Israel ..... 5
KG Kyrgyzstan ..... 1
PE Peru ..... 31
SN Sweden ..... 8
SP Spain ..... 33
US United States ..... 6

\section*{Available datasets for transition between CON and AWS}


\section*{Data pre-processing}
- The ratio series AWS-CON are subject to quality control, and before the analysis obvious errors are removed
- Further, the series are inspected for internal inhomogeneities and- if necessary -the records are split into two or more homogeneous segments

\section*{Different quality of datasets in individual countries}


Daily sums for AWS (PC01) and CON (PCO2) measurements


\section*{Different quality of datasets for individual countries}


Daily sums for AWS (PC01) and CON (PCO2) measurements


\section*{Different quality of datasets for individual countries}


Daily sums for AWS (PC01) and CON (PCO2) measurements


\section*{Different quality of datasets for individual countries}


Daily sums for AWS (PC01) and CON (PCO2) measurements


\section*{Different quality of datasets for individual countries}

Daily sums for AWS (PC01) and CON (PCO2) measurements


\section*{Differences in CON-AWS Monthly Sums for individual regions}


Note: boxplot width differs with number of available stations

\section*{Differences in CON-AWS Monthly Sums for individual regions and seasons}


\section*{Differences in CON-AWS Monthly Sums for individual stations, by countries}




Differences in CON-AWS monthly sums for individual stations, by countries


\section*{Differences in CON-AWS montly sums for different altitudes, example from CZ}


Relative frequencies (\%) of the distribution of differences in daily precipitation totals measured by CON (METRA 886) and AWS (MR3H) rain-gauges for groups of stations at different altitudes in the period 1999-2007.

\section*{Differences in CON-AWS montly sums for different altitudes, example from CZ}



Variation of mean differences in monthly precipitation totals (mm) for groups of stations at different altitudes:
1 - \(\leq 400\) m; 2-401-700 m, 3-701\(1000 \mathrm{~m}, 4-\geq 1001 \mathrm{~m}\) a.s.l.

Groups of stations at different altitudes: \(\leq 400,401-700,701-1000, \geq 1001 \mathrm{~m}\) a.s.l.

\section*{Differences in CON-AWS montly sums for different altitudes, example from CZ}


Annual variation of differences in monthly precipitation totals (mm) measured by CON (METRA 886) and AWS (MR3H) rain-gauges for groups of stations at different altitudes \(1-\leq 400 m ; 2-401-700 m ; 3-701-1000 m ; 4-\geq 1001 m\) ) in the period 1999-2007.

\section*{Summary}
- Different datasets poses different data quality (compare e.g. PE vs. BR)
- AWS generally underestimate precipitation compared to CON, this effect can be seen throughout the world
- There are differences between individual seasons
- Additional variables helps to understand seasonal differences
- Higher differences (biases) occur in connection with: solid precipitation, higher wind speeds (winter), thunderstorms (summer)

\section*{Acknowledgements And Further Work}
- This study has been possible thanks to the kind contributions of many coauthors and their institutions.
- It will continue under the guidance of POST. More info about POST:
http://tinyurl.com/ISTI-Parallel
- Interested in joining us? Please Contact Victor Venema (Victor.Venema@uni-bonn.de)
- Can you contribute with dataset? Please contact Enric Aguilar (Enric.Aguilar@urv.cat )

\title{
General mathematical formulation of homogenization of climate data series
}

\author{
Tamás Szentimrey
}

Hungarian Meteorological Service

\section*{Content}

Mathematics of homogenization of climate data series?
Critical remarks
Mathematical formulation of homogenization
- Definition of inhomogeneity of series
- Unconditional homogenization, theorems
- Relation with Quantile Matching methods
- Conditional homogenization, theorems
- Mathematical questions to be solved
- Special but basic case: Normal Distribution

What is in the practice?
- A popular procedure
- Relation of parallel observations and extremes
- An alternative procedure for mean and st. deviation
- Homogenization of standard deviation in MASH!

\section*{Mathematics of homogenization of climate data series?}

There are several methods and software in meteorology but
- there is no exact mathematical theory of homogenization!

Moreover,
- the mathematical formulation is neglected in general,
-"mathematical statements" without proof are in the papers,
- unreasonable dominance of the practice over the theory.

No solution without advanced mathematics!

\section*{Theoretical questions}

Mathematical formulation of homogenization of climate data series?

What are the mathematical problems to be solved? And what is the solution?

Evaluation of the mathematical base of the methods applied in practice?

The following contradiction is an often phenomenon at the methods:
good heuristic ideas versus poor mathematics

The ratio of the problems to be solved: \(90 \%\) mathematics, \(10 \%\) meteorology
But at the methods applied in practice: \(10 \%\) mathematics, \(90 \%\) meteorology

\section*{Mathematical formulation of homogenization}

Distribution problem, not regression!
Let us assume we have daily or monthly data series.
\(Y_{1}(t)(t=1,2, . ., n)\) : candidate series of the new observing system
\(Y_{2}(t)(t=1,2, . ., n):\) candidate series of the old observing system
\(1 \leq T<n\) : change-point
Before \(T\) : series \(Y_{2}(t)(t=1,2, . ., T)\) can be used
After \(T\) : series \(Y_{1}(t)(t=T+1, . ., n)\) can be used

Theoretical (!) cumulative distribution functions (CDF)
\(F_{1, t}(y)=\mathrm{P}\left(Y_{1}(t)<y\right), \quad F_{2, t}(y)=\mathrm{P}\left(Y_{2}(t)<y\right)\)
\(y \in(-\infty, \infty), t=1,2, . ., n\)

Natural change (annual cycle, climate change)
Functions \(F_{1, t}(y), F_{2, t}(y)(t=1,2, . ., n)\) change in time!

Definition of inhomogeneity
The merged series
\(Y_{2}(t)(t=1,2, . ., T), Y_{1}(t)(t=T+1, . ., n)\) is inhomogeneous,
if identity \(F_{2, t}(y) \equiv F_{1, t}(y)(t=1,2, . ., T)\) is not true.

\section*{Homogenization}

Adjustment, correction of values \(Y_{2}(t)(t=1,2, . ., T)\)
in order to have the corrected values \(Y_{1,2 h}(t)(t=1,2, . ., T)\)
with the same distribution as the elements
of series \(Y_{1}(t)(t=1,2, . ., T)\) have, i.e.:
\[
\mathrm{P}\left(Y_{1,2 h}(t)<y\right)=\mathrm{P}\left(Y_{1}(t)<y\right)=F_{1, t}(y) \quad t=1,2, . ., T
\]

\section*{Theorem for (unconditional) homogenization}
i, Existence:
\[
\begin{aligned}
& \text { If } Y_{1,2 h}(t)=F_{1, t}^{-1}\left(F_{2, t}\left(Y_{2}(t)\right)\right) \text { then } \\
& \mathrm{P}\left(Y_{1,2 h}(t)<y\right)=F_{1, t}(y) \quad(t=1,2, . ., T) .
\end{aligned}
\]

\section*{ii, Unicity:}

If \(h(s)\) is a strictly monotonous increasing function and \(\mathrm{P}\left(h\left(Y_{2}(t)\right)<y\right)=F_{1, t}(y)\), then \(h(s)=F_{1, t}^{-1}\left(F_{2, t}(s)\right)\).

\section*{Quantile Matching (QM) methods}

The basis of these methods can be integrated into the general theory since the transfer function,
\(Y_{1,2 h}(t)=F_{1, t}^{-1}\left(F_{2, t}\left(Y_{2}(t)\right)\right)\) is equivalent with,
\(Y_{1,2 h}(t)=Y_{2}(t)+\left(F_{1, t}^{-1}(p)-F_{2, t}^{-1}(p)\right)\)
where \(F_{1, t}^{-1}(p), F_{2, t}^{-1}(p)\) are the quantile functions
and \(F_{2, t}\left(Y_{2}(t)\right)=p\).
However the QM methods developed in practice mainly for daily data are very weak empiric methods. It is not real mathematics! (good heuristics with poor mathematics; brave people!)

\section*{Conditional homogenization based on given events}

Let \(B=\left\{B_{j}: j=1,2, . ., M\right\}\) be a complete system of events:
\(B_{i} \cap B_{j}=\varnothing, \sum_{j=1}^{M} P\left(B_{j}\right)=1 \quad\) (e.g. macrosynoptic weather situations)
Conditional homogenization of \(Y_{2}(t)\) on given events \(B\),
\(Y_{1,2 h}(t, B)=F_{1, t, B_{j}}^{-1}\left(F_{2, t, B_{j}}\left(Y_{2}(t)\right)\right) \Leftrightarrow B_{j}\) occurs at \(t \quad(t=1,2, \ldots, T)\)
where \(F_{1, t, B_{j}}(y), F_{2, t, B_{j}}(y)\) are the conditional distribution functions of \(Y_{1}(t), Y_{2}(t)\), given \(B_{j}\), that is
\(F_{1, t, B_{j}}(y)=\mathrm{P}\left(Y_{1}(t)<y \mid B_{j}\right), F_{2, t, B_{j}}(y)=\mathrm{P}\left(Y_{2}(t)<y \mid B_{j}\right)\)
\(y \in(-\infty, \infty), \quad t=1,2, . ., T\)

Then as a consequence of Bayes and total probability theorems:
\(\mathrm{P}\left(Y_{1,2 h}(t, B)<y\right)=F_{1, t}(y) \quad y \in(-\infty, \infty), t=1,2, . ., T\)

\section*{Mathematical questions to be solved}

The simpler case: unconditional homogenization
The merged series are given: \(Y_{2}(t)(t=1,2, . ., T), Y_{1}(t)(t=T+1, . ., n)\)
The transfer function is: \(\quad Y_{1,2 h}(t)=F_{1, t}^{-1}\left(F_{2, t}\left(Y_{2}(t)\right)\right) \quad(t=1,2, . ., T)\)

\section*{Problems:}

Estimation, detection of change point(s) \(T\) ?
Estimation of distribution functions \(F_{1, t}(y), F_{2, t}(y)(t=1,2, . ., T)\) ?
i, \(F_{1, t}(y), F_{2, t}(y)\) change in time (annual cycle, climate change)
ii, No sample for \(F_{1, t}(y)(t=1,2, . ., T)\)

The problem is insolvable in general case!
Only relative methods can be used with some assumptions.
In addition some simplifications are necessary.

\section*{Special but basic case: Normal Distribution (e.g. temperature)}

\section*{Theorem.}

Let us assume normal distribution,
\(Y_{1}(t) \in N\left(E_{1}(t), D_{1}(t)\right), \quad Y_{2}(t) \in N\left(E_{2}(t), D_{2}(t)\right) \quad(t=1,2, . ., n)\)
\(E_{1}(t), E_{2}(t):\) means \(\quad D_{1}(t), D_{2}(t):\) standard deviations

Then the transfer function of homogenization:
\[
Y_{1,2 h}(t)=F_{1, t}^{-1}\left(F_{2, t}\left(Y_{2}(t)\right)\right)=E_{1}(t)+\frac{D_{1}(t)}{D_{2}(t)}\left(Y_{2}(t)-E_{2}(t)\right) \quad(t=1,2, . ., T)
\]

\section*{Remarks:}
i , A simple linear function and there is no "tail distribution" problem!
ii, Only the mean \((\boldsymbol{E})\) and standard deviation \((\boldsymbol{D})\) must be homogenized!

\section*{What is in the Practice?}

\section*{A popular procedure}
1. Homogenization of monthly series:

Break points detection, correction of mean
Assumption: homogeneity of higher order moments (e.g. st. deviation)
2. Homogenization of daily series:

Trial to homogenize also the higher order moments
(Quantile Matching (HOM, RHtests), Spline (SPLIDHOM))
Used monthly information: only the detected break points

\section*{Contradiction}
- Inhomogeneity of higher moments: daily: yes versus monthly: no?

It is not adequate mathematical model for st. deviation!
- Why are not used the monthly correction factors for daily homogenization?

\section*{What is the reason of this "popular procedure"?}

\section*{An observed phenomenon at extremes}

The differences of parallel observations are larger in case of extremes.
What is this? Inhomogeneity in the tails of the distributions?
No, this observed phenomenon has a simple and logical reason.
The reason is that the extremes may be expected at different moments in case of parallel observations. It is a natural phenomenon.

Or with other words, there maybe systematic biases in rank order!
An example is presented.

Example by Monte-Carlo method for natural dependence of \(Y_{1}-Y_{2}\) on \(Y_{1}\)
Generated series: \(Y_{1}(t) \in N(0,1), Y_{2}(t) \in N(0,1), \operatorname{corr}\left(Y_{1}(t), Y_{2}(t)\right)=\rho=0.9 \quad(t=1, . ., 1000)\)
Difference series: \(Y_{1}(t)-Y_{2}(t), \quad \mathrm{E}\left(Y_{1}(t)-Y_{2}(t) \mid Y_{1}(t)\right)=(1-\rho) \cdot Y_{1}(t)=0.1 \cdot Y_{1}(t)\)


\section*{An alternative procedure}
1. Homogenization of monthly series:

Break points detection, correction of the mean and standard deviation.
The correction is based on the normal distribution transfer function.
Assumption: homogeneity of higher order ( \(>2\) ) moments.
This assumption is always right in case of normal distribution!
2. Homogenization of daily series:

Homogenization of mean and standard deviation on the basis of the monthly results. The used monthly information are the break points and the monthly corrections of the mean and standard deviation.

\title{
Developing of MASH for homogenization of Standard Deviation (Multiple Analysis of Series for Homogenization; Szentimrey, T.)
}

\section*{Order of steps}
1. Homogenization of Standard Deviation of data series
2. Homogenization of Mean of data series

\section*{Principles of Methodology}

Multiple break points detection procedures for Mean and St. Deviation. Procedures based on Test of Hypothesis.
Confidence Intervals are also given for the break points. (make possible automatic use of metadata).

Estimation of the correction factors for Mean and St. Deviation. Estimation is based on Confidence Intervals.
\begin{tabular}{ccccccc} 
Test & Statistics & for & St. Deviation & Before & Homogenization \\
Critical & value & (significance & level & 0.05 ) : & 26.8 \\
Series & TSB & Series & TSB & Series & TSB \\
7 & 141.13 & 11 & 50.79 & 14 & 33.13 \\
6 & 28.19 & 12 & 26.07 & 13 & 24.93 \\
5 & 22.69 & 2 & 22.11 & 4 & 21.54 \\
1 & 20.87 & 3 & 19.44 & 10 & 17.46 \\
9 & 15.31 & 8 & 11.74 & 15 & 10.26
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Critical value} & \multicolumn{4}{|l|}{(significance level 0.05) : 21.76} \\
\hline Series & TSB & Series & TSB & Series & TSB \\
\hline 12 & 1262.47 & 5 & 926.31 & 10 & 831.81 \\
\hline 7 & 637.72 & 6 & 558.66 & 3 & 506.91 \\
\hline 15 & 500.07 & 8 & 463.98 & 11 & 320.14 \\
\hline 13 & 288.51 & 14 & 249.40 & 9 & 197.54 \\
\hline 1 & 166.10 & 4 & 134.41 & 2 & 88.90 \\
\hline
\end{tabular}

17 Annual mean Maximum Temperature Series 1950-2007 (Network real 000005 of COST Benchmark)

Test Statistics for St. Deviation Before Homogenization Critical value (significance level 0.05): 21.00
\begin{tabular}{cccccr} 
Series & TSB & Series & \multicolumn{1}{c}{ TSB } & Series & \multicolumn{1}{c}{ TSB } \\
6 & 41.27 & 5 & 21.28 & 7 & 20.34 \\
12 & 13.23 & 13 & 12.69 & 4 & 12.01 \\
1 & 11.06 & 14 & 9.89 & 11 & 9.17 \\
8 & 9.15 & 17 & 7.53 & 2 & 6.78 \\
15 & 6.62 & 9 & 6.24 & 16 & 5.29 \\
10 & 5.07 & 3 & 4.14 & & \\
AVERAGE : & 11.87 & & & &
\end{tabular}

Test Statistics for Mean Before Homogenization Critical value (significance level 0.05): 20.91
\begin{tabular}{cccccr} 
Series & TSB & Series & TSB & Series & TSB \\
4 & 351.61 & 14 & 245.58 & 12 & 227.40 \\
16 & 189.04 & 2 & 183.80 & 3 & 168.03 \\
8 & 138.70 & 5 & 130.57 & 6 & 108.53 \\
1 & 96.95 & 17 & 80.80 & 15 & 56.89 \\
7 & 47.16 & 10 & 37.68 & 11 & 24.90 \\
13 & 21.09 & 9 & 18.47 & & \\
AVERAGE : & 125.13 & & & &
\end{tabular}

15 Hungarian Annual Mean Temperature Series 1901-2014
Test Statistics for St. Deviation After Homogenization Critical value (significance level 0.05): 26.8
\begin{tabular}{cccccc} 
Series & TSA & Series & TSA & Series & TSA \\
7 & 28.19 & 12 & 27.66 & 14 & 26.34 \\
5 & 24.13 & 2 & 22.11 & 4 & 21.54 \\
1 & 20.87 & 3 & 20.54 & 10 & 18.92 \\
6 & 18.18 & 11 & 15.61 & 13 & 14.96 \\
9 & 14.85 & 15 & 12.53 & 8 & 11.74
\end{tabular}

AVERAGE: 19.88
\begin{tabular}{|c|c|c|c|c|c|}
\hline Critical & value & (significance & level & 0.05) : 2 & \\
\hline Series & TSA & Series & TSA & Series & TSA \\
\hline 11 & 32.81 & 13 & 31.46 & 9 & 29.11 \\
\hline 12 & 27.27 & 8 & 25.37 & 7 & 25.29 \\
\hline 5 & 22.93 & 1 & 21.91 & 4 & 21.85 \\
\hline 10 & 21.45 & 14 & 21.04 & 3 & 19.12 \\
\hline 6 & 18.96 & 2 & 18.52 & 15 & 17.23 \\
\hline AVERAGE : & & 4.09 & & & \\
\hline
\end{tabular}

\section*{There is no royal road!}

Thank you for your attention!

The International Surface Temperature Initiative - progress, future developments and how countries can contribute

\section*{International \\ Surface} Temperature Initiative

29 October 2015

Peter Thorne, Blair Trewin, Victor Venema, Jay Lawrimore, Kate Willett, with thanks to many initiative participants

\section*{History and purpose of ISTI}
- ISTI was created following a CCl resolution in 2010
- Goal is to have an open, transparent and traceable data set with maximum global coverage
- Aiming for data at a range of timescales (monthly, daily, sub-daily)
- Governance through a steering committee and subject-matter working groups
- Not a formal WMO program, but has considerable involvement from NMHSs, as well as other institutions, and experts from other relevant fields (e.g. statistics, metrology)

\section*{The real world observing system is not the lab ... we are not dealing with \(10^{-\mathrm{N}_{K}}\)}


Michael de Podesta's 'Instrument of real beauty'

Image courtesy Michael de Podesta, NPL

\section*{It's not, in general, these either ...}


\section*{It's more like these ...}


\section*{Inhomogeneities: annual mean minimum temperature at Reno, Nevada, USA}


\section*{The long list of issues to be considered}
- Station moves
- Instrument changes
- Observer changes
- Automation
- Time of observation biases
- Microclimate exposure changes
- Urbanization
- And so on and so forth ...

\section*{Underlying which are two absolutely fundamental issues}
- A lack of traceability to absolute or relative standards for most, if not all, of the historical records
- A lack of adequate documentation of the (ubiquitous) changes sufficient to characterize on a station by station basis in an absolute sense their changing measurement characteristics.

\section*{ISTI: Creating a framework to enable advances}
- The International Surface Temperature Initiative can put in place certain structures to enable science advances
1. Basic environmental data provision
2. Creation of independent means to benchmark and assess
3. User advice
- The rest is down to the global science community ....

\section*{Step 1: Data rescue and provision}


Jay Lawrimore, Jared Rennie and Peter Thorne (2013) Responding to the Need for Better Global Temperature Data, EOS, 94 (6), 61-62 DOI: 10.1002/2013EO060002

\section*{Stage 0 / Stage 1 Overview and Metadata}
- Stage 0: Original observation
- Scanned Images of paper record (PDF / JPG)
- Not always available
- Conversely, a lot of data only exist on paper (or as scanned images) - still a great need for data rescue
- Stage 1: Native keyed format.
- Databank policy encourages data be provided in its rawest form; that closest to the measurements that were first reported by the observer.
- Ideally no quality control or homogenization should be applied prior to submission
- Other Requirements
- Any time scale (monthly / daily / hourly)
- Metadata: latitude, longitude, elevation, name
- Other metadata: ID, country of origin, instrumentation


\section*{Data Provenance Tracking Flags}
- Data source for Stage 0 Files
- NCDC, JMA, BOM
- Data source for Stage 1 Files
- NCDC, NMA's, other international organizations
- Type of data sent by source
- Raw, quality controlled, bias corrected
- Mode of Digitization
- SourceCorp, CDMP, Local Originator
- Mode of converting hourly data into daily data
- Main standard synoptic times, intermediate synoptic times, other
- Method of converting daily data into monthly summaries
- How many days used to calculate monthly average

\section*{The version 1.1.0 databank (released 15 October 2015)}

\section*{ALL Stage Three Monthly}

Recommended_Merge


\section*{Stage 3 merging program}
- Take all monthly sources and combine them into one complete global dataset
- Metadata matching and data equivalence criteria
- Code is readable, portable, and modular - need an automated method due to large number of stations
- Recommended product, along with several variants to characterize uncertainty
- Results placed on FTP
- ftp://ftp.ncdc.noaa.gov/pub/data/globaldatabank/monthly/stage3


\section*{Source hierarchy}
- More than 100 sources received
- Certain sources need to be given a higher preference, so that no valuable information is lost
- ISTI has developed a set of criteria that dictates the hierarchy for the recommended merge
- In addition, some grossly overlapping sources aren't considered, to avoid excess duplication

\section*{How does ISTI coverage compare with other global data sets?}

GHCNM v3 (tavg)
Number of Stations: 7280


ALL Stage Three Monthly
Recommended_Merge


\section*{Number of Stations}

BLACK= GHCN-M v3 | RED=ISTI v1.0.0 | BLUE=ISTI v1.1.0


\section*{Station Length Histogram}

GRAY=Stage Three (recommended) | RED=GHCN-M V3


\section*{Number of 5 Degree Gridboxes (Globe)}

BLACK= GHCN-M v3 | RED=ISTI v1.0.0 | BLUE=ISTI v1.1.0


\section*{Homogenisation and benchmarking}
- A major part of ISTI is providing a platform for benchmarking homogenisation methods.
- With real world data we do not have the luxury of knowing the truth - we CANNOT measure performance of a specific method or closeness to real world truth of any one dataproduct.
- We CAN focus on performance of underlying algorithms (AKA software testing) - consistent synthetic test cases, simulating real world noise, variability and spatial correlations potentially enable us to do this.

\section*{Benchmarks}
- Global benchmarks that mirror the databank holdings will be made available in 2016
- 8-10 versions, with a subset open but most closed
- Realistic intra- and inter-station statistics for each but distinct added data artefacts to be removed
- Benchmarks will be available for \(c .2\) years for analysis
- Then the closed benchmarks will be unveiled and different algorithms assessed by benchmarking group.

\section*{Some of the challenges facing ISTI}
- Needs countries to make data available - data policy is moving slowly towards open data at both national and WMO levels, but still a long way to go.
- ISTI has virtually no resources of its own.

\section*{ISTI - potential to be a basis for global and regional data products?}



\section*{How countries can contribute}
- Making data (especially daily data) available to ISTI
- Participating in data rescue activities
- Participating in the benchmarking project

To make arrangements for data submissions (in any reasonable format), contact data.submission@surfacetemperatures.org

\title{
Questions and Answers
}

\section*{www.surfacetemperatures.org}

Bull. Amer. Met. Soc. doi: 10.1175/2011BAMS3124.1
https://www2.image.ucar.edu/event/summerprog.surfacetemps

\section*{Peter.thorne@nersc.no}

Data.submission@surfacetemperatures.org

\section*{Efficiency tests for automatic} homogenization methods of monthly temperature and precipitation series "MULTITEST"

\section*{Peter Domonkos \({ }^{1}\) and José A. Guijarro \({ }^{2}\)}
\({ }^{1}\) Centre for Climate Change, University Rovira i Virgili,
Tortosa, Spain, e-mail:dpeterfree@gmail.com \({ }^{2}\) Spanish Meteorological Agency (AEMET)

\section*{Aims of MULTITEST}
- Testing of monthly homogenization softwares with larg test datasets of varied climatic and inhomogeneity properties and identifying the best performing methods;
- Clarifying the relations between efficiencies and test dataset characteristics;
- Finding the minimum conditions for automatic methods in terms of the number of comparable time series, their length and their spatial correlations;
- Providing a large size benchmark dataset for the climatological community characterizing the observed climate of various geographical regions;

\section*{Scope of MULTITEST}
- Efficiency tests for the homogenization of monthly temperature and monthly precipitation datasets;
- Only automatic methods or semiautomatic methods with default parameterization will be tested;
- Wide range of test dataset properties:
- climate,
- network density,
- inhomogeneity properties,
- length of time series,
- missing data fields.

\section*{Important and timely (?)}
- Variability of monthly and annual means is still an important issue;
- Methodology is better developed for monthly and annual scale data and the potential improvement of data quality is the clearest with the homogenization of annual and monthly data;
- The HOME benchmark with its 15 networks was too small and could not include the examination of the impact of various dataset properties;
- There are new softwares, which should be tested;
- Most inhomogeneities cannot be quantified with parallel measurements.

\section*{Evaluation of efficiency}
- Centred RMSE of monthly values;
- Centred RMSE of annual values;
- RMSE of trend bias;
- RMSE of network mean trend bias.

\section*{Principles of methodology}
- Parent networks of at least 100 , spatially well correlating time series are built, then subsets of preset size are randomly selected;
- Both real data based and synthetic test datasets are used;
- Forms of inhomogeneities: shift, trend, platform;
- True frequency of inhomogeneities is usually higher than that of the detected frequency;
- Inhomogeneity properties are widely varied.

\section*{Homogeneous benchmark}
- Regional differences of climate is more important for precipitation than for temperature;
- Real data based section of benchmark:
- advantage: it characterizes best the spatial temporal structures of observed data;
- drawback: presence of residual inhomogeneities;
- Synthetic section:
- advantage: fully homogeneous;
- drawback: imperfect spatial-temporal structures

\section*{Homogeneous benchmark}
- Temperature, real data based section
- USA data, Rachel Warren's dataset
- Spanish data (AEMET)
- Temperature, synthetic section
- Spatially correlated white noise, 3 versions of predominating spatial correlations

\section*{Homogeneous benchmark}
- Precipitation, real data based section
- Mediterranean climate: Mallorca (AEMET)
- oceanic climate: Ireland (Met Éireann)
- continental climate: CARPATCLIM gridded observational data (www.carpatclim-eu.org)
- Precipitation, synthetic section
- Climate of northern Spain, two versions of predominant spatial correlations
- Monsoon climate, modelling climate of India, two versions of predominant spatial correlations

\section*{Parameterization}
- Length of time series: \(30 \mathrm{yr}, 60 \mathrm{yr}, 120 \mathrm{yr}\)
- Number of time series in network: \(4, \mathbf{5}, 7,10,25,40\)
- Missing data: \(\mathbf{0 \%}, 10 \%, 30 \% ; 25\) series \& \(70 \%\) missing data
- Form of inhomogeneities: shift, trend, platform
- Three kinds of standard dev. of inhomogeneities (low, medium, high)
- Frequency in \(100 y r\)
- Frequency of shift
- Frequency of trend
- Frequency of platform
- Seasonality of biases:
```

Temperature Precipitation
3 57 1 3
1 1
1}

- semi-sinusoid - no seasonality
- other
- winter biases differ

```

\section*{Interactive contact and transparency}
- New softwares are accepted for testing until the end of 2016
- Parent benchmark will be published at the beginning of 2017
- Datasets of selected experiments will be published

\section*{Thank you for your attention!}

\section*{Homogenization of daily peak wind gust series from Spain and Portugal}

\author{
José A. Guijarro \({ }^{1}\), Cesar Azorin-Molina \({ }^{2}\)
}
\({ }^{1}\) State Meteorological Agency (AEMET), Palma de Mallorca, Spain
\({ }^{2}\) Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
EUMETNET Data Management Workshop
St. Gallen, Switzerland, 28-30 October 2015

\section*{Outline}

Introduction

Homogenization strategies

Impact on extreme wind indexes

Conclusions

\section*{Introduction}
- Homogenization of daily series is difficult, due to their lower noise/signal ratio.
- Yet the study of the variability of extreme weather events requires homogeneous and quality controlled daily series.
- Here we apply different strategies to homogenize daily maximum gust speeds from Portugal and Spain, and analyze their impact on the evaluation of the trends of mean and maximum gusts, the number of days over the 90 percentile and maximum expected gusts for return periods of 50, 100 and 200 years.
- Question:

Do,we really need, to homogenize the daily series?

\section*{Introduction}
- Homogenization of daily series is difficult, due to their lower noise/signal ratio.
- Yet the study of the variability of extreme weather events requires homogeneous and quality controlled daily series.
maximum gust speeds from Portugal and Spain, and analyze their impact on the evaluation of the trends of mean and maximum gusts, the number of days over the 90 percentile and maximum expected gusts for return periods of 50, 100 and 200 years.
Question
Do,we really need to homogenize the daily series?

\section*{Introduction}
- Homogenization of daily series is difficult, due to their lower noise/signal ratio.
- Yet the study of the variability of extreme weather events requires homogeneous and quality controlled daily series.
- Here we apply different strategies to homogenize daily maximum gust speeds from Portugal and Spain, and analyze their impact on the evaluation of the trends of mean and maximum gusts, the number of days over the 90 percentile and maximum expected gusts for return periods of 50,100 and 200 years.

\section*{Introduction}
- Homogenization of daily series is difficult, due to their lower noise/signal ratio.
- Yet the study of the variability of extreme weather events requires homogeneous and quality controlled daily series.
- Here we apply different strategies to homogenize daily maximum gust speeds from Portugal and Spain, and analyze their impact on the evaluation of the trends of mean and maximum gusts, the number of days over the 90 percentile and maximum expected gusts for return periods of 50, 100 and 200 years.
- Question:

Do we really need to homogenize the daily series?

\section*{Methodology}
- The data set consisted of 80 series (7 Portuguese and 73 Spanish) of daily maximum peak wind gusts spanning 54 years (1961-2014).
- Corresponding daily series from MM5 simulations at 10 km resolution were available until 2007 (Murcia University).
- Homogenization was performed with Climatol 2.2 (multiplicative model) on:

\section*{Methodology}
- The data set consisted of 80 series (7 Portuguese and 73 Spanish) of daily maximum peak wind gusts spanning 54 years (1961-2014).
- Corresponding daily series from MM5 simulations at 10 km resolution were available until 2007 (Murcia University).

\section*{Methodology}
- The data set consisted of 80 series (7 Portuguese and 73 Spanish) of daily maximum peak wind gusts spanning 54 years (1961-2014).
- Corresponding daily series from MM5 simulations at 10 km resolution were available until 2007 (Murcia University).
- Homogenization was performed with Climatol 2.2 (multiplicative model) on:

Average monthly values, using MM5 series as references
when available, and adjusting the daily series with
interpolated monthly correction factors.
Direct homogenization of daily values, using MM5 series as
references when available.
Direct homogenization of daily values, without MM5
references.

\section*{Methodology}
- The data set consisted of 80 series (7 Portuguese and 73 Spanish) of daily maximum peak wind gusts spanning 54 years (1961-2014).
- Corresponding daily series from MM5 simulations at 10 km resolution were available until 2007 (Murcia University).
- Homogenization was performed with Climatol 2.2 (multiplicative model) on:
- Average monthly values, using MM5 series as references when available, and adjusting the daily series with interpolated monthly correction factors.


\section*{Methodology}
- The data set consisted of 80 series (7 Portuguese and 73 Spanish) of daily maximum peak wind gusts spanning 54 years (1961-2014).
- Corresponding daily series from MM5 simulations at 10 km resolution were available until 2007 (Murcia University).
- Homogenization was performed with Climatol 2.2 (multiplicative model) on:
- Average monthly values, using MM5 series as references when available, and adjusting the daily series with interpolated monthly correction factors.
- Direct homogenization of daily values, using MM5 series as references when available.

\section*{Methodology}
- The data set consisted of 80 series (7 Portuguese and 73 Spanish) of daily maximum peak wind gusts spanning 54 years (1961-2014).
- Corresponding daily series from MM5 simulations at 10 km resolution were available until 2007 (Murcia University).
- Homogenization was performed with Climatol 2.2 (multiplicative model) on:
- Average monthly values, using MM5 series as references when available, and adjusting the daily series with interpolated monthly correction factors.
- Direct homogenization of daily values, using MM5 series as references when available.
- Direct homogenization of daily values, without MM5 references.

\section*{Methodology}
- The data set consisted of 80 series (7 Portuguese and 73 Spanish) of daily maximum peak wind gusts spanning 54 years (1961-2014).
- Corresponding daily series from MM5 simulations at 10 km resolution were available until 2007 (Murcia University).
- Homogenization was performed with Climatol 2.2 (multiplicative model) on:
- Average monthly values, using MM5 series as references when available, and adjusting the daily series with interpolated monthly correction factors.
- Direct homogenization of daily values, using MM5 series as references when available.
- Direct homogenization of daily values, without MM5 references.
- Annual values of maximum and average wind peak gusts and number of days over the 90 percentile.

\section*{Station locations}

ALMet

VX station locations (5 clusters)


\section*{Data availability}

\section*{VX data availability}


\section*{Data availability}

Nr. of VX-d data in all stations


\section*{Regression observations vs MM5}

Zaragoza (1961-2007)


\section*{Correlations observations vs MM5}

Correlations between observed and MM5 series


\section*{Inhomogeneities}

VX-d at 2614(26), ZAMORA


\section*{Shift}

VX-d at P535(75), LISBOA GEOFÍSICO


\section*{Trend}

\section*{VX-d at B278(71), PALMA DE MALLORCA/SON SAN JUAN}


\section*{Relative homogeneity}

\section*{VX-d at 1024E(7), SAN SEBASTIÁN,IGUELDO}


\section*{Windowed SNHT histogram}

Histogram of maximum tV


\section*{Complete SNHT histogram}

Histogram of maximum SNHT


\section*{Abnormal series reconstruction}

VX-m at 8368U(57), TERUEL


\section*{Residual inhomogeneities}

VX2-d at 2539(25), VALLADOLID/VILLANUBLA


\section*{Change of variance}

VX2-d at P535(75), LISBOA GEOFíSICO


\section*{Other homogenizations}

Due to these unsatisfactory results, further homogenizations were performed either directly on the daily data or on annual extreme wind indexes, which led to decreasing levels of break detection when compared to the monthly homogenization:
\begin{tabular}{lc}
\hline Series & Breaks \\
\hline Raw (filled) & - \\
Monthly+MM5 to daily & 171 \\
Daily+MM5 & 87 \\
Daily & \\
\hline Annual indexes: & Averages \\
& Maximums \\
& 28 \\
\hline
\end{tabular}

\section*{Trends of mean peak gusts}

Trends of mean daily peak gusts


Homogenization methods

\section*{Trends of annual peak gusts}

Trends of annual maximum peak gusts


Homogenization methods

\section*{Trends of days > 90\%}

Trends of nr. of days with peak gust > 90 precentile


Homogenization methods

\section*{Max. expected peak gusts}

Maximum expected peak gusts ( \(\mathrm{m} / \mathrm{s}\) ) for return periods of \(\mathbf{5 0 , 1 0 0}\) and 200 years


\section*{Conclusions}
- In many cases, there is no clear evidence suggesting that the homogenization of the daily series is needed (especially for computing trends of average values).
- But these results, derived from real data, cannot be conclusive, since we do not know the true solution. \(\Rightarrow\) Further experiments should be performed with synthetic data.

\section*{Conclusions}

MINSTENO
Of nckicur Of MCRICHMURA
TMEDONMENTI
- In many cases, there is no clear evidence suggesting that the homogenization of the daily series is needed (especially for computing trends of average values).
- But these results, derived from real data, cannot be conclusive, since we do not know the true solution.
\(\Rightarrow\) Further experiments should be performed with synthetic data.

\section*{Conclusions}
- In many cases, there is no clear evidence suggesting that the homogenization of the daily series is needed (especially for computing trends of average values).
- But these results, derived from real data, cannot be conclusive, since we do not know the true solution.
- \(\Rightarrow\) Further experiments should be performed with synthetic data.

A daily homogenized temperature and precipitation data set for Norway
Elin Lundstad \& Ole Einar Tveito Norwegian Meteorological Institute 29.10.2015



\section*{Objectives}
>Establish a quality assurance tools to identify and adjust for homogeneity violation
\(>\) Producing homogenized daily values of temperature and precipitation for a number of long climate series.
> Develop methodology to generate "homogenized" daily values of precipitation and temperature for given locations / catchments based on gridded ( \(1 \times 1 \mathrm{~km}\) ) map.
-Facilitate homogenized daily values and analysis for homogenization so that it is available to external users, such as Statkraft.

\section*{Challenges with the methods}

HOMER


Adapted Caussinus-Mestre Algorithm for Networks of Temperature Series (ACMANT)


Multiple Analysis of Series for Homogenization Tamás Szentimrey


\section*{What is new?}
- Former homogenization of monthly values
- Mostly temperature data of some stations
- Now homogenization of daily data
- and all the precipitation stations
- New methods-and prograns:
\% SNHT HOMER, MASH, SPLIDHOM,_Htest


\section*{Methods}

\section*{SPLIDHOM}

Station: 00018700 has no break. No need to homogenize! Returning to main menu.


\section*{Locations/Network}

Network Breaks
Temperature
- 7 stations @Tromsø ..... 1
- 7 @ Trondheim ..... 7
- 12 @ Bergen ..... 3
- 10 @ Kristiansand ..... 3
- 10 @ Oslo ..... 3 or 4 ?
Precipitation
1 @ Bardufoss ..... 0
- Mo i Rana ..... 0
- Fokstua ..... 8
- Takle ..... 1
- Sauda ..... 0

Norwegian
Meteorological Institute

\section*{Challenges}

\section*{Network}


\section*{What causes the breaks?}

\section*{Relocation}


1982


\section*{From manual to automatic WS}


\section*{Mil-46 \(\boldsymbol{\rightarrow}\) MII-74 \(\boldsymbol{\rightarrow}\) MII-2001}


\section*{New buildings}


\section*{Vegetation grows}


\section*{Results of the homogenization}

\section*{Code for intepretation of breaks Metadata}

A = Change from manuel to automatic station
E = Environment
H = Change of instrument height
I = Inspection
\(\mathrm{N}=\) New instrument
O = Shift of observer
R = Relocation
S = Change of screening
? = Not confirmed
\(A=C h a n g e\) from manuel to automatic station

\section*{30450000 TROMSO (H)}

E = Environment


H = Change of instrument height
I = Inspection

\section*{N = New instrument}

O = Shift of observer
R = Relocation
S = Change of screening ? = Not confirmed



\section*{TRONDHEIM}



\section*{Bergen}


FLORIDA


TAM 5054 000 80 ADA (H)



TAM 39040000 KJE \(\mid \mathrm{K}(\mathrm{I})\)


\(\square\) TM 18700000 OSLO-BLIIDERI (ト


\section*{What happen in \(1988 ?\)}


\section*{What happ}

ratm cand: 00018700 ref: 00019400 DJF 19370201 - 19800229

ratm 00018700 DJF 19540101-1980110 ratm 00018700 DJF 19801101-1987022


ratm 00018700 DJF 19540101-1980110
ratm 00018700 DJF 19540101-1980110




\section*{Precipitation: RHtestsV4}



\section*{Fokstua}



\section*{Takle}


\section*{Experiences so far..}
- For temperature, we follow the recommendations of COST HOME:
- Homer for monthly temperature
- Software: SPLIDHOM for daily temperature
- Homogeneity Software precipitation is problematic: Seasonal challenges are not covered by "standard" applications. We use several Homer, MASH, .... One method of day P.T. (RHtests_dlyPrcp4 @ Wang)

Have access to other methods (MASH, ACMANT, ...) for comparison (monthly data)

Open source can be a challenge:
- lack of standardization maintenance and repairs


\section*{Thanks for your attention!}

Twitter.
@nile_2011

Norwegian
Meteorological
Institute

\title{
Homogenisation of Maximum and Minimum Air Temperatures in Ireland
}

Mary Curley* and Seamus Walsh

\title{
Homogenisation of monthly maximum and minimum temperature series
}

HOMER 2.6

\section*{Number of stations homogenised}
- 17 years or more of data

Minimum: 99 stations
Maximum: 100 stations
- Less than 17 years of data

Minimum: 35 stations
Maximum: 34 stations
- Total number of stations homogenised

Minimum and Maximum: 134 stations

\section*{Number of stations homogenised}

17 years or more of data
- Minimum temperature
- 99 stations (+48 N. Ireland reference stations)
- Maximum temperature
- 100 stations (+48 N. Ireland reference stations)

17 years or more of data


\title{
Irish stations with 17 years or more of data
}

50 years of data: 22 stations

40-49 years of data: 19 stations

30-39 years of data: 19 stations
\(<30\) years data: \(\quad\) 40 stations


Data Management Workshop St Gallen October 2015


\section*{Number of Breaks}

17 years or more of data
\begin{tabular}{|c|c|c|}
\hline Total number of & Minimum & Maximum \\
\hline \begin{tabular}{c} 
breaks
\end{tabular} & 108 & 111 \\
\hline \begin{tabular}{c} 
\% of stations with \\
breaks
\end{tabular} & 69 & 63 \\
\hline\(\%\) verified breaks & 37 & 37 \\
\hline
\end{tabular}

\section*{Verified breaks}
\begin{tabular}{|l|c|c|}
\hline & Minimum & Maximum \\
\hline New site \% & 35 & 41 \\
\hline Screen replaced \% & 25 & 17 \\
\hline New observer \% & 15 & 12 \\
\hline Degrees C thermometer \% & 5 & 5 \\
\hline New thermometer \% & 5 & 15 \\
\hline AWS \% & 5 & - \\
\hline Other \% & 10 & 10 \\
\hline
\end{tabular}

\section*{Non-verified breaks}
\begin{tabular}{|c|c|c|}
\hline & Minimum & Maximum \\
\hline No metadata \% & 28 & 30 \\
\hline No reason \% & 47 & 47 \\
\hline \begin{tabular}{c} 
Possible reason/no exact \\
date \%
\end{tabular} & 25 & 23 \\
\hline
\end{tabular}

\section*{Example of some minimum monthly data detected breaks}
\begin{tabular}{|c|c|c|c|c|}
\hline & Year & month & & Reason \\
\hline TRALEE_CLASH & 1982 & 5 & v & degrees c thermometer \\
\hline TRALEE_CLASH & 1993 & 12 & v & new site \\
\hline BALLINACURRA & 1972 & 1 & v & new obs \\
\hline TUAM_AIRGLOONEY & 1963 & 1 & n & no metadata \\
\hline GLENAMOY & 1984 & 2 & v & site move \\
\hline MILFORD_VOCSCH & 1975 & 5 & n & no metadata \\
\hline KINSALEY_AGRRES & 1993 & 8 & v & new screen \\
\hline LETTERKENNY_MAGHERENAN & 2005 & 5 & n & no metadata \\
\hline LETTERKENNY_MAGHERENAN & 1968 & 12 & n & observer poor around this time \\
\hline DUNGARVAN_CARRIGLEA & 2005 & 3 & v & screen replaced and new fence \\
\hline DUNGARVAN_CARRIGLEA & 1976 & 8 & n & replacement screen sent \\
\hline CLOOSH_FORSTN & 2004 & 9 & n & no reason \\
\hline CLOOSH_FORSTN & 2007 & 7 & n & no metadata \\
\hline
\end{tabular}

\section*{Number of breaks in stations}
\begin{tabular}{|c|c|c|}
\hline & Minimum & Maximum \\
\hline \# stations with breaks & 68 & 63 \\
\hline \# stations with 1 break & 39 & 31 \\
\hline \# stations with 2 breaks & 19 & 23 \\
\hline \# stations with 3 breaks & 9 & 5 \\
\hline \# stations with 4 breaks & 1 & 2 \\
\hline \# stations with 5 breaks & - & 2 \\
\hline
\end{tabular}

\section*{Dublin Airport site move}
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{c} 
Break \\
amplitude
\end{tabular} & \begin{tabular}{c} 
Annual \\
correction
\end{tabular} & \begin{tabular}{c} 
Monthly \\
correction
\end{tabular} \\
\hline Minimum & -1.03 & -1.0 & -0.9 to -1.3 \\
\hline Maximum & -0.28 & -0.3 & -0.1 to -0.4 \\
\hline
\end{tabular}


MET êreann

Data Management Workshop St Gallen October 2015


Data Management Workshop St Gallen October 2015



Data Management Workshop St Gallen October 2015



Data Management Workshop St Gallen October 2015

\section*{Markree Castle reason for breaks unknown}
\begin{tabular}{|c|c|c|c|c|}
\hline & Year & \begin{tabular}{c} 
Break \\
amplitude
\end{tabular} & \begin{tabular}{c} 
Annual \\
correction
\end{tabular} & \begin{tabular}{c} 
Monthly \\
correction
\end{tabular} \\
\hline Minimum & \(1961-1965\) & -1.52 & -1.2 & -0.7 to -1.8 \\
\hline & \(1966-1998\) & 1.62 & 0.4 & 0.2 to 0.6 \\
\hline & \(1998-2008\) & -1.26 & -1.3 & -0.9 to -1.8 \\
\hline & & & & \\
\hline Maximum & \(1961-1965\) & -1.01 & -1.7 & -1.2 to -2.0 \\
\hline & \(1966-1984\) & -0.27 & -0.6 & -0.2 to -1.1 \\
\hline & \(1984-1995\) & -0.48 & -0.4 & 0 to -0.9 \\
\hline & \(1995-2007\) & -1.42 & -1.4 & -1.3 to -1.6 \\
\hline
\end{tabular}



Data Management Workshop St Gallen October 2015

\section*{Stations with little metadata but multiple breaks}
- Oak Park
- Min: 3 breaks 1967, 1997 \& 2006
- Max: 5 breaks 1967, 1977, 1991, 1997 \& 2006
- Derrygreenagh
- Min: 3 breaks 1973, 1982 \& 2007
- Max: 4 breaks 1964, 1974, 1990 \& 2002

\section*{HOMER 2.6}
- Outliers which were extreme events were reinserted after homogenisation
- In general interactive mode was used. A lot more breaks when non-interactive mode used

\section*{Comparison with MASH}
- Some stations compared well for others there was a big difference

\section*{HOMER v MASH}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & Jan & Feb. & Mar & Apr & May & Jun & Jul & Aug & Sep & Oct & Nov & Dec \\
\hline \begin{tabular}{l}
Min T \\
Dublin \\
Airport
\end{tabular} & & 0.2 & -0.2 & -0.3 & -0.2 & 0 & 0.7 & -0.3 & 0 & 0.2 & 0 & -0.1 & 0 \\
\hline \[
\begin{gathered}
\text { Max T } \\
\text { Dublin } \\
\text { Airport }
\end{gathered}
\] & & -0.1 & 0.2 & 0 & -0.1 & 0 & 0 & 0 & -0.3 & -0.1 & 0.1 & 0.1 & -0.1 \\
\hline Min T Markree & 1961 & -1.1 & 0.1 & -1.7 & -1.1 & -1.3 & -1.7 & -1.1 & -1 & -0.5 & -1.6 & -1.1 & -0.7 \\
\hline & 1983 & -0.5 & 0.1 & -0.8 & -0.2 & -0.5 & -0.6 & -0.5 & -0.5 & 0.5 & -0.5 & -0.4 & -0.8 \\
\hline & 2002 & -0.7 & 0.2 & -1.4 & -1.1 & -0.8 & -1.4 & -0.9 & -0.7 & -0.4 & -1.1 & -0.6 & -0.3 \\
\hline
\end{tabular}

\section*{Stations with less than 17 years of data}
- Minimum temperature 35 stations
- Maximum temperature 34 stations

\section*{Less than 17 years of data}
- Infilled the series which had less than 17 years of data prior to homogenisation
- Used the homogenised data series from stations with 17 years or more of data as reference


Data Management Workshop St Gallen October 2015

\section*{Number of Breaks}

Less than 17 years of data
\begin{tabular}{|c|c|c|}
\hline Total number of & Minimum & Maximum \\
\hline \begin{tabular}{c} 
breaks
\end{tabular} & 47 & 46 \\
\hline \begin{tabular}{c} 
\% of stations with \\
breaks
\end{tabular} & 80 & 82 \\
\hline\(\%\) verified breaks & 34 & 37 \\
\hline
\end{tabular}

\section*{Number of breaks in stations}
\begin{tabular}{|c|c|c|}
\hline & Minimum & Maximum \\
\hline \# stations with breaks & 28 & 28 \\
\hline \# stations with 1 break & 13 & 24 \\
\hline \# stations with 2 breaks & 11 & 8 \\
\hline \# stations with 3 breaks & 4 & 2 \\
\hline
\end{tabular}

\section*{Daily data}

\section*{Daily data series}
- Looking at parallel data series
- SPLIDHOM

\section*{Parallel data series}
- When stations where automated we had parallel measurements for a number of months.
- Mullingar
- Valentia
- Belmullet
- Malin Head
- Sherkin Island

\section*{Parallel data series}
- In general the difference seems bigger between minimum temperatures however for Sherkin Island the maximum temperature is more affected.
- The difference in the maximum thermometers can range from 0.5 up to 3 degrees \(C\) whilst for the minimum it is generally less than a degree.

\section*{SPLIDHOM}
- Starting with Dublin stations
- long series with generally not too many breaks in monthly data
- dense network

\title{
Thanks to the Met Office, particularly Dan Hollis for providing Northern Ireland monthly maximum and minimum data
}

Thank you


Data Management Workshop St Gallen October 2015

\title{
Influence of outliers in homogeneity testing of seasonal precipitation data in Norway
}

Herdis M. Gjelten, Ole Einar Tveito and Elin Lundstad
29.10.2015

\section*{Typical test result}
\begin{tabular}{ll}
\hline Break year & Adjustment factor \\
\hline 1961 & 1.08 \\
1963 & 0.94 \\
1964 & 1.08 \\
\hline 1974 & 0.91 \\
\hline 1979 & 1.08 \\
\hline 1980 & 0.94 \\
\hline 1981 & 1.04 \\
\hline
\end{tabular}

\section*{Test network}

\section*{Removal of outliers}
\begin{tabular}{llll}
\hline Station & Daily value & Percentile & New value \\
\hline 300 & 2.5 & 53 & \\
\hline 5350 & 3.2 & 54 & \\
5800 & 30.7 & 99 & \\
\hline 6040 & 9.0 & 87 & \\
\hline \(\mathbf{6 4 6 0}\) & \(\mathbf{3 2 . 1} \mathbf{~ m m}\) & \(\mathbf{9 9} \%\) & \(\mathbf{2 . 0} \mathbf{~ m m}\) \\
\hline 6550 & 2.3 & 41 & \\
\hline 6650 & 1.3 & 29 & \\
\hline 6850 & 0.3 & 13 & \\
\hline 11900 & 2.4 & 47 & \\
\hline 12200 & 11.4 & 93 & \\
\hline 12260 & 0.7 & 22 & \\
\hline 12520 & 2.9 & 61 & \\
\hline Average & & \(\mathbf{5 4 . 5} \%\) & \\
\hline
\end{tabular}

\section*{Removal of outliers - result}
\begin{tabular}{lcc}
\hline & \multicolumn{2}{c}{ Number of breaks } \\
\hline & Before & After \\
MASH & 26 & 21 \\
HOMER & 34 & 33 \\
\hline
\end{tabular}

\section*{Typical test result - again}
\begin{tabular}{ll}
\hline Break year & Adjustment factor \\
\hline 1961 & 1.08 \\
1963 & 0.94 \\
1964 & 1.08 \\
\hline 1974 & 0.91 \\
1979 & 1.08 \\
\hline 1980 & 0.94 \\
\hline 1981 & 1.04 \\
\hline
\end{tabular}

\section*{Ratios}








\section*{Ratios}



Monthly sum January: \(6460=11.9 \mathrm{~mm}\) \(12200=0.9 \mathrm{~mm}\)
\(\rightarrow\) large ratio

Breaks
\begin{tabular}{ll}
1983 & 1.11 \\
1985 & 0.90 \\
\hline
\end{tabular}

6040 vs 6550 - Jun









\section*{Conclusions?}

Norwegian
Meteorological
Institute

\section*{Thank you for your attention!}

\title{
Adjustment of new daily data from thermograph and pluviograph to a conventional series: the case of Fabra Observatory, Barcelona (1904-1913)
}

10th EUMETNET Data Management Workshop - 28/30 October 2015, St. Gallen

Marc Prohom, Enric Aguilar and Germán Solé

Centre for
Climate Change
1. Background and objectives
2. Digitalization process
3. Reference series and quality control
4. Homogeneity analysis - Break point detection (HOMER)
5. Homogeneity analysis - Daily adjustment on temperature (SPLIDHOM)
6. Homogeneity analysis - Monthly adjustment on precipitation (HOMER)
7. Results and conclusions

\section*{1. Background and objectives}

Fabra Observatory (in Barcelona, 412 m asl) has one of the longest, continuous and unchanged location series of Iberia.


Meteorological field at Fabra Observatory: 1920s (left image) - present day (right image)
For years it was believed that meteorological observations began in August 1913. In 2012, evidence of previous observations appeared and the data and metadata was detected and recovered from the archives of the Royal Academy of Sciences and Arts of Barcelona.

\section*{1. Background and objectives}
- New data covered the period from 1905(Dec) up to 1914(June).
- Was recorded by weekly thermographs and pluviographs.
- The site was located at the roof of the observatory.


Location of the undocumented observatory

\section*{1. Background and objectives}


Weekly thermograph and tipping-bucked rain gauge, both Richard manufacturers

15/12/1904 up to 30/06/1914 97.9\% data recovered for \(T\) and 100\% for precipitation (hourly and daily)

\section*{1. Background and objectives}

MAIN OBJECTIVE: adjust the daily T data ( Tx and Tn ) and the monthly PPT data to the conventional series.
ACHIVEMENT: the longest and more continuous series of Catalonia, located in a single point.


\section*{2. Digitalization process}

Several steps:
a) Scanning of the thermograph and pluviograph stripes.
b) To obtain the digitized values (time, variable) according to WINDIG methodology.
c) Applying algorithms for the required corrections:
- \(\mathbf{T}\) : correction due to time marks curvature and determination of hourly and daily Tmax and Tmin.
- PPT: determination of 0 level at the beginning of the record, Determination of the time and values of the maxima and minima due to the discharge process, evaluating the precipitation during this interval, and creating a new increasing time-precipitation series.
d) Quality control: coherency controls.
e) Main difficulties: determination of time and likely malfunctions, especially for rain gauge data.

\section*{2. Digitization process}


Before time-mark curvature correction After time-mark curvature correction Increasing time-precipitation series


\section*{2. Reference series (T)}


5 daily Tx and Tn series were detected with >80\% of data (1904-1930)

\section*{2. Reference series (PPT)}


7 monthly PPT series were detected with \(>80 \%\) of data (1904-1930)

\section*{3. Quality control}

RCLIMDEX (+extraqc) was applied to daily TN and TX candidate (Fabra) and reference series.
- 13 daily TN and 14 daily TX anomalous values were detected
- No anomalous data were detected for PPT


\section*{4. Break point detection (HOMER)}

HOMER approach (COST ES0601) was used for break-point detection: the whole set of series were used.

A clear BP was detected in 1911/12 at the end of "thermograph" period.


\section*{5. Adjustment of daily TX and TN (SPLIDHOM)}

SPLIDHOM was used to adjust the daily series, taking into account 1913 BP.
The most well correlated series from the set were:
\begin{tabular}{|c|c|c|c|c|}
\hline & \[
\begin{gathered}
\text { DJF } \\
\text { Bef/Aft }
\end{gathered}
\] & \begin{tabular}{l}
MAM \\
Bef/Aft
\end{tabular} & \[
\begin{gathered}
\text { JJA } \\
\text { Bef/Aft }
\end{gathered}
\] & \[
\begin{gathered}
\text { SON } \\
\text { Bef/Aft }
\end{gathered}
\] \\
\hline Mataró & 0.85/0.80 & 0.86/0.80 & 0.82/0.79 & 0.92/0.94 \\
\hline Sabadell & 0.85/0.85 & 0.77/0.79 & 0.84/0.79 & 0.92/0.92 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|}
\hline & \begin{tabular}{c} 
DJF \\
Bef/Aft
\end{tabular} & \begin{tabular}{c} 
MAM \\
Bef/Aft
\end{tabular} & \begin{tabular}{c} 
JJA \\
Bef/Aft
\end{tabular} & \begin{tabular}{c} 
SON \\
Bef/Aft
\end{tabular} \\
\hline Mataró & \(0.79 / 0.80\) & \(0.85 / 0.79\) & \(0.82 / 0.80\) & \(0.90 / 0.93\) \\
\hline Montserrat & \(0.83 / 0.83\) & \(0.87 / 0.75\) & \(0.79 / 0.87\) & \(0.90 / 0.93\) \\
\hline
\end{tabular}

TN

\section*{6. Adjustment of daily TX and TN (SPLIDHOM)}





TN 000BN007 SON 19050901-1911123


TN 000BN007 SON 19050901-1911123


Correction of HSP between 01/09/1905 and 19/11/1911, for Fabra Observatory daily TX (left panel) and TN (right panel) for the autumn season (SON), and using Mataró ( X ) as reference.

Corrections are always negative and quite large, for both TX and TN, confirming the warming effect of the roof (summer) and wind damping effect (TN, in winter).

\section*{6. Adjustment comparison: SPLIDHOM vs. HOMER (TX)}


Annual averages of daily corrected TX series \((\square)\) compared to raw \((\Delta)\) and monthly homogenized series by HOMER (solid line).

\section*{6. Adjustment comparison: SPLIDHOM vs. HOMER (TN)}


Annual averages of daily corrected TN series \((\square)\) compared to raw \((\Delta)\) and monthly homogenized series by HOMER (solid line).

\section*{6. Adjustment of monthly PPT (HOMER)}


Two breakpoints were detected: 1907 (unknown) and 1913.
A clear underestimation of rainfall totals was detected, probably due to exposition and/or instrumental problems.

\section*{6. Adjustment of monthly PPT (HOMER)}


\section*{7. Some conclusions...}
- Early daily and sub-daily undocumented data from Fabra Observatory (Barcelona) has been digitized and recovered.
- HOMER succeeds in detecting the "new" period recovered.
- Adjustment results differ if we apply a daily (SPLIDHOM) or monthly (HOMER) approach... why?
- HOMER works with 5 stations while SPLIDHOM just 1
- The correlation is not good enough (around 0.8) for daily adjustments in some seasons.
- Data rescue activities: completing existing series and digitizing unknown ones = improves break-point detection and adjustment.
- To be done: contrasting SPLIDHOM findings with other methods as percentile-matching (PM) algorithm (Trewin, 2012).
- Breaking news!

\section*{7. Some conclusions...}


Parallel measurements were taken in the roof and the garden, from July 1913 up to October 1920.

\section*{THANKS FOR YOUR ATTENTION!}

\section*{Climate Data Records of ECVs from the CM SAF}

Current Status and application examples

Martin Werscheck, Rainer Hollmann, Jörg Trentmann, Frank Kaspar

\section*{Overview:}
- Short introduction to CMSAF products
- Using CMSAF products to evaluate quality of ground based radiation measurements
- Analysing requirements of in-situ networks for Germany (surface radiation, sunshine duration).

\section*{Clouds}

Cloud Fraction (\%), CM SAF, July 2010


\section*{Radiation}


\section*{Water Vapor}

- EUMETSAT Satellite Application Facility on Climate Monitoring www.cmsaf.eu
- Provides satellite-derived climate data of geophysical variables
- Regional, up to global coverage
- Currently, data available from Jan 1982 to October 2015
- Spatial resolution: \(0.03^{\circ}\) to \(1^{\circ}\)
- Data freely available in netcdf-format
- User-friendly data access via the Web User Interface: www.cmsaf.eu/wui
- Toolkit (example data + software):

\section*{www.cmsaf.eu/tools}
- CM SAF Community Site available via EUMETSAT: training.eumetsat.int
\(\checkmark\) Cloud Information
\(\checkmark\) Surface and ToA Radiation
\(\checkmark\) Surface Albedo
\(\checkmark\) Water Vapour
\(\checkmark\) Precipitation, wind, surface fluxes (ocean only)
\(\checkmark\) Free Tropospheric Humidity


\section*{CM SAF data is freely available without restrictions!}

- Registration required
- Data will be delievered in 1 hr to 1 day to an ftp server in hdf / netcdf format

Web User Interface


\section*{www.cmsaf.eu/wui}


CM SAF conducts annual
workshops / online events to support the use of CM SAF data


\section*{Surface Solar Radiation Dataset - Heliosat (SARAH)}
- Variables
- Global irradiance (SIS)
- Direct normalized irradiance (DNI)
- Effective cloud albedo (CAL)
- Resolution
- Spatial: \(0.05^{\circ} \times 0.05^{\circ}\)
- Temporal: hourly, daily, monthly means
- Coverage
- Spatial: Meteosat disk
- Temporal: 1983 to 2013
- Satellites
- Meteosat 2 to 10 (MVIRI/SEVIRI)
- Freely available at www.cmsaf.eu


Validation of SARAH daily mean irradiance with DWD network


Time series of differences between SARAH SIS and station measurement


Obvioues jumps in 1989 and 1997 / 98 ....

Inhomogenities in station data?

\section*{Schleswig}

Anzahl-Tage: 11256-1981-01-01 to 2013-12-31




Multi-year daily averages
- Very high correlation

CM SAF
- CM SAF data provide good representation of the spatial structure of daily variability
- Correlation decreases with distance of stations.




\section*{Trend assessment, evaluation with GEBA}


Surface Radiation Anomaly, GEBA / SARAH


Consistent linear trend;
underestimated by about \(1.5 \mathrm{~W} / \mathrm{m}^{2} / \mathrm{dec}\)
GEBA data provided by Arturo Sanchez-Lorenzo, IPE-CSIC, Zaragoza

\section*{Spatial Trends}

Trend in SIS [W m-2/dec], 1983 - 2013
- Mainly positive trends
- Substantial spatial variability


\section*{Climatology}

WMO RA VI Regional Climate
Centre on Climate Monitoring
(http://www.dwd.de/rcc-cm)


Monthly mean Global Radiation July 2014

\(\begin{array}{llllllllllllllll}25 & 50 & 75 & 100 & 125 & 150 & 175 & 200 & 225 & 250 & 275 & 300 & 325 & 350 & 375 \\ {\left[\mathrm{~W} / \mathrm{m}^{2}\right]}\end{array}\)


CM SAF


RP ONLINE
28.10.2014


\section*{EPIEGEL ONLINE WISSENSCHAFT}

21.10.2014

Langzeitanalyse: Wo und wann in Europa länger die Sonne scheint

\section*{DWD Solar Radiation Product for Germany:}

\section*{www.dwd.de/solarenergie}
- Combined product using the CM SAF SIS operational product and surface measurements
- Generated on a monthly basis

\section*{Available online at www.sciencedirectcom}

SciVerse ScienceDirect
Solar Energy 86 (2012) 3561-3574

Solar resource assessment in the Benelux by merging Meteosat-derived climate data and ground measurements

Michel Journée \({ }^{\mathrm{a}, *}\), Richard Müller \({ }^{\text {b }}\), Cédric Bertrand \({ }^{\text {a }}\)

Globalstrahlung in der Bundesrepublik Deutschland Basierend auf Satellitendaten und Bodenwerte aus dem DWD-Messnetz Monatssummen März 2015

```

Adv sci Res. 10, 15-19,2013
wwwave.scries nevilitis.2013

```

``` ©Aultor(s) 2013. CC Altroution \(3.0 L\) Lcense
```

Advances in Sclence \& Research

Remote Sens. 2013, 5, 2943-2972; doi:10.3390;5506294

Gridding of Daily Sunshine Duration By Combination of Station and Satellite Data Luxembourg based on Meteosat and in-situ observations

Satellite-Based Sunshine Duration for Europe
Steffen Kothe ${ }^{1+\infty}$, Elizabeth Good ${ }^{2}$, André Obregón ${ }^{3}$, Bodo Ahrens ${ }^{1}$ and Helga Nitsche

## May

## Sunshine Duration from DNI

(SDU if DNI > $120 \mathrm{~W} / \mathrm{m} 2$ )

July


In-situ
Klimatologische Jahressumme Sonnenscheindauer 1983-2013 KU21


Sat


Which product provides best representation of the real conditions?



Error in sunshine duration vs. number of stations used for merging

## Summary:

- CMSAF provides satellite-based datasets of several parameters
- These datasets can be used to evaluate quality and homogenity of in-situ observations
- DWD has analysed requirements for the in-situ network based on CMSAF radiation data.


## Global solar radiation:

 comparison of satellite and ground based observationsPetr Skalak ${ }^{1,2}$, Piotr Struzik ${ }^{3}$, Aleš Farda ${ }^{2,1}$, Pavel Zahradníček ${ }^{2,1}$, Petr Štěpánek ${ }^{2,1}$

1) Czech Hydrometeorological Institute, Praha, Czech Republic
2) Global Change Research Centre AS CR, Brno, Czech Republic
3) Institute of Meteorology and Water Management, Krakow, Poland
skalak@chmi.cz

## CHMI Radiation Network

- 19 stations in total
- established in 1984 with 11 stations (the oldest records since 1953)
- monitoring of solar radiation (global radiation + components, UV radiation)
- equipped with Kipp\&Zonen CM11 and CMP 11 pyranometers

Q: How can we get information on solar radiation at other locations?


## Sunshine duration at CHMI stations



## Applicability of sunshine duration

Sunshine duration (SD) can be recalculated into global radiation (GLBR) but detailed metadata are needed:

- changes of instrumentation and its location
- the real horizon at the station and its changes in time (tree growth, new buildings...)
$\rightarrow$ not often well documented at voluntary (i.e., majority of) stations

Annual sum of GLBR [ $\mathrm{MJ} / \mathrm{m}^{2}$ ] over the Czech Republic in the period 1961-2000.

Source: Tolasz R., 2007, Climate Atlas of Czechia, CHMI, Praha

Q: Would it look the same if more stations were available? Aren't we missing some information on the real spatial variability of GLBR?

## Solar radiation from satellites



## EUMETSAT satellite radiation data

## EUMETSAT Climate Monitoring Satellite Application Facility (CM SAF)

- http://www.cmsaf.eu
- operational and climate monitoring products including surface incoming solar radiation (SIS)
- $\mathbf{S I S}=$ irradiance the 200-400 nm wavelength region
- operational products released 8 weeks after observation at the latest
- 

CM SAF SARAH (Surface Solar Radiation Data record - Heliosat) Dataset

- combining Meteosat $1^{\text {st }}$ and $2^{\text {nd }}$ generation data into a single homogenous dataset
- 1983-2013*
- hourly, daily and monthly time resolution
- almost full disc coverage ( $-65^{\circ}$ to $65^{\circ}$ in longitude and latitude) in $0.05^{\circ}$ spatial resolution
*) extension till 31. 12. 2014 published in October 2015


## EUMETSAT satellite radiation data

EUMETSAT Land Surface Analysis Satellite Application Facility (LSA SAF)

- http://landsaf.meteo.pt
- operational products including Downward Surface Shortwave Flux (DSSF)
- DSSF = irradiance in the wavelength interval 300-4000 nm
- operational products released instantly
- 2009 -today*
- 30 minutes and daily time resolution
- full disc coverage over land in $0.05^{\circ}$ spatial resolution
*) based on LSA SAF Web User Interface


## DSSF validation against stations

Comparison of monthly sums of LSA SAF DSSF estimates with CHMI stations measurements of global radiation (GLBR) in 2011-2014

- up to 19 stations versus the nearest grid point (mean distance: 2.1 km )
- DSSF data partly incomplete (Aug 2011, Sep-Dec 2012 missing/omitted)

Station ID	LATITUDE	LONGITUDE	ALTITUDE	DISTANCE [km]	AZIMUTH [ ${ }^{\circ}$ ]
B1HOLE01	17.57	49.320556	222	2.61	123.8
B2BTUR01	16.688889	49.153056	241	0.73	-152.3
B2KUCH01	16.085278	48.881111	334	2.60	-115.5
C1CHUR01	13.615278	49.068333	1118	1.81	5.9
C1KOCE01	13.838611	49.467222	519	2.87	118.0
C2CBUD01	14.469722	48.951944	395	0.74	-163.1
H1LBOU01	15.544927	50.769883	1315	3.49	-72.3
H3HRAD01	15.838452	50.177649	278	2.49	-52.0
H3SVRA01	16.034167	49.735	734	$\mathbf{0 . 6 3}$	118.3
L1PLMI01	13.378889	49.764722	360	2.87	-73.8
O1MOSN01	18.119167	49.698333	250	0.93	-86.3
O1PORU01	18.1594	49.8253	239	3.08	116.9
O2LUKA011	16.953333	49.652222	510	2.75	-64.1
P1PKAR01	14.427778	50.069167	261	2.48	-120.8
P1PLIB01	14.446944	50.007778	302	2.04	-104.1
P3KOSE01	15.080556	49.573611	532	3.02	76.9
U1DOKS01	14.17	50.45889	158	1.43	60.2
U1KATU01	13.32806	50.37667	322	1.33	163.9
U1ULKO01	14.04111	50.68333	375	1.53	-166.0

## DSSF \& GLBR monthly sums

- DSSF estimates against in-situ records over the whole period 2011-2014 at selected two stations





## DSSF-GLBR differences in time



## Annual course: bias \& absolute bias



## Bias \& absolute bias among stations



## Size and significance of errors




LSA SAF Product Requirements for DSSF at the MSG pixel resolution for $30-\mathrm{min}$ or daily data:

- Accuracy $10 \%$ for DSSF $>200 \mathrm{~W} / \mathrm{m}^{2}$
- Accuracy $20 \mathrm{~W} / \mathrm{m}^{2}$ for DSSF < $200 \mathrm{~W} / \mathrm{m}^{2}$

CM SAF Target Accuracy for monthly mean surface solar irradiance (SIS) in SARAH:

- $15 \mathrm{~W} / \mathrm{m}^{2}$ corresponding to ca. $40 \mathrm{MJ} / \mathrm{m}^{2}$ in monthly sum


## Size and significance of errors




- Majority of data points fit within $\pm 40 \mathrm{MJ} / \mathrm{m}^{2}$ quality target
- In the summer half year $\pm 10 \%$ relative error is met


## Conclusions \& outlooks

- LSA SAF DSSF provides realistic but biased estimates of Downwelling Shortwave Solar Flux and derived monthly totals of irradiance
- Negative bias dominates
- Higher elevated locations (mountains) show bigger errors
- For operational products of CHMI only summer half-year data seems to be suitable (relative error <10\%)
- Validation of the CM SAF SARAH dataset on daily/monthly time scale
- Exploring a potential of the SARAH to be used as a reference dataset to correct a bias of climate models $\rightarrow$ global radiation from GCMs/RCMs often used by models of the climate change impact community)


## Thank you for attention

## Climatological Atlas of Northeastern Atlantic and Western Mediterranean for the period 1981-2010 based on ERA-Interim Reanalysis

José A. Guijarro, Justo Conde, Joan Campins, $M^{a}$ Luisa Orro and $\mathrm{M}^{\mathrm{a}}$ Ángeles Picornell

State Meteorological Agency (AEMET), Spain

EUMETNET Data Management Workshop
St. Gallen, Switzerland, 28-30 October 2015

## Outline

Motivation

Methodology

ERA-I vs buoy data

Final products

## Motivation

- Maritime climate information is very important for the long term planning of a number of activities as maritime transportation of goods and people, fishing, touristic cruises, etc.
 maritime meteofolpgy.


## Motivation

- Maritime climate information is very important for the long term planning of a number of activities as maritime transportation of goods and people, fishing, touristic cruises, etc.
- A number of atlas of waves and meteorological conditions on seas have been produced historically (Weather Bureau, 1938; HMSO, 1949; KNMI, 1957; Crutcher, 1969; Young, 1996; Lindau, 2001; Steurer, 1990), one of the most recent developed by KNMI based on ERA-40 reanalysis (SterI and Caires, 2005).
the period 1981-2010 for the areas for which the Spanish Meteqrological Agency_(AEMET) issues predictiqns_of +


## Motivation

- Maritime climate information is very important for the long term planning of a number of activities as maritime transportation of goods and people, fishing, touristic cruises, etc.
- A number of atlas of waves and meteorological conditions on seas have been produced historically (Weather Bureau, 1938; HMSO, 1949; KNMI, 1957; Crutcher, 1969; Young, 1996; Lindau, 2001; Steurer, 1990), one of the most recent developed by KNMI based on ERA-40 reanalysis (Sterl and Caires, 2005).
- Our aim was to update the maritime climate information to the period 1981-2010 for the areas for which the Spanish Meteorological Agency (AEMET) issues predictions of maritime meteorology.


## Maritime zones



## Methodology

- ERA-Interim reanalysis was used as source of data due to its high quality and resolution $\left(1^{\circ}\right)$.
- Wind and wave variables were downloaded from $35^{\circ} \mathrm{W}$ to $12^{\circ} \mathrm{E}$ and 0 to $52^{\circ} \mathrm{N}$ and for the period 1981-2013.
- Reanalysis data were compared with deep water buoy measurements from the Spanish Agency Puertos del Estado for the five years 2009-2013.
- Maps and graphs of significant wave height, wind speed, mean period and sea surface temperature were developed with programs written in R.
- The final atlas was produced as a PDF document generated with $\operatorname{LAT} E_{\mathrm{E}}$.
Antinteractive Rtpitogram allows the tproduction of other + màpstand gràiphs hot included th the atlas.


## Methodology

- ERA-Interim reanalysis was used as source of data due to its high quality and resolution $\left(1^{\circ}\right)$.
- Wind and wave variables were downloaded from $35^{\circ} \mathrm{W}$ to $12^{\circ} \mathrm{E}$ and 0 to $52^{\circ} \mathrm{N}$ and for the period 1981-2013.
- Reanalysis data were compared with deep water buoy measurements from the Spanish Agency Puertos del Estado for the five years 2009-2013.
- Maps and graphs of significant wave height, wind speed, mean period and sea surface temperature were developed with programs written in R
- The final atlas was produced as a PDF document generated with ${ }^{L A T} T_{E X}$. Antinteractive Rtpitogratn allows the production of other + màps and grāphs hot included tin the atlas.


## Methodology

- ERA-Interim reanalysis was used as source of data due to its high quality and resolution $\left(1^{\circ}\right)$.
- Wind and wave variables were downloaded from $35^{\circ} \mathrm{W}$ to $12^{\circ} \mathrm{E}$ and 0 to $52^{\circ} \mathrm{N}$ and for the period 1981-2013.
- Reanalysis data were compared with deep water buoy measurements from the Spanish Agency Puertos del Estado for the five years 2009-2013.
Maps and graphs of significant wave height, wind speed, mean period and sea surface temperature were developed with programs written in R
The final atlas was produced as a PDF document generated with $\angle A T E X$. Antinteractive Rt-ptograth allows the productiont of other + ināps and graphs hot included to the atlas.


## Methodology

- ERA-Interim reanalysis was used as source of data due to its high quality and resolution ( $1^{\circ}$ ).
- Wind and wave variables were downloaded from $35^{\circ} \mathrm{W}$ to $12^{\circ} \mathrm{E}$ and 0 to $52^{\circ} \mathrm{N}$ and for the period 1981-2013.
- Reanalysis data were compared with deep water buoy measurements from the Spanish Agency Puertos del Estado for the five years 2009-2013.
- Maps and graphs of significant wave height, wind speed, mean period and sea surface temperature were developed with programs written in R.
- The final atlas was produced as a PDF document generated with ${ }^{A T} T_{E X}$.
Antinteractive Rtpitogram allows the production of other +



## Methodology

- ERA-Interim reanalysis was used as source of data due to its high quality and resolution $\left(1^{\circ}\right)$.
- Wind and wave variables were downloaded from $35^{\circ} \mathrm{W}$ to $12^{\circ} \mathrm{E}$ and 0 to $52^{\circ} \mathrm{N}$ and for the period 1981-2013.
- Reanalysis data were compared with deep water buoy measurements from the Spanish Agency Puertos del Estado for the five years 2009-2013.
- Maps and graphs of significant wave height, wind speed, mean period and sea surface temperature were developed with programs written in R.
- The final atlas was produced as a PDF document generated with ${ }^{A T} T_{E} X$.


## Methodology

- ERA-Interim reanalysis was used as source of data due to its high quality and resolution $\left(1^{\circ}\right)$.
- Wind and wave variables were downloaded from $35^{\circ} \mathrm{W}$ to $12^{\circ} \mathrm{E}$ and 0 to $52^{\circ} \mathrm{N}$ and for the period 1981-2013.
- Reanalysis data were compared with deep water buoy measurements from the Spanish Agency Puertos del Estado for the five years 2009-2013.
- Maps and graphs of significant wave height, wind speed, mean period and sea surface temperature were developed with programs written in R.
- The final atlas was produced as a PDF document generated with $L^{A T} T_{E} X$.
- An interactive R program allows the production of other maps and graphs not included in the atlas.


## Maritime zones



## ERA-I vs buoy data

Mincteni
 TMEDIONMETNTE

Dirección del viento ( ${ }^{\circ}$ ) en
ESTACA BARES


Altura significativa de las olas (m) en
ESTACA BARES


Velocidad del viento ( $\mathrm{m} / \mathrm{s}$ ) en
ESTACA BARES


Periodo de las olas (s) en ESTACA BARES


## ERA-I vs buoy data


TMEDIONMENT:


Altura significativa de las olas (m) en VALENCIA


Velocidad del viento ( $\mathrm{m} / \mathrm{s}$ ) en
VALENCIA


Periodo de las olas (s) en VALENCIA


## $H_{s}$ corrections

Altura significativa de las olas
Factores de corrección de la media de ERAi


## Wind speed corrections

Viento medio a 10 m de altura
Factores de corrección de la media de ERAi


## ERA-I vs buoy extremes



Máximos anuales de altura significativa del oleaje (m)


Diferencia entre la máxima velocidad media del viento anual observada cada hora y cada 6 horas


Máximos anuales de velocidad media del viento (m/s)


## Atlas contents

- Monthly and annual maps of:
- Percentiles 50, 95 and 100 of significant wave height, wind speed, mean period and sea surface temperature.
- Wind roses
- Frequencies of significant wave height over 2.5, 6 y 9 m
- Frequencies of wind speed over 11.1, 17.3 y $24.4 \mathrm{~m} / \mathrm{s}$
- Climatic summaries for selected $1 \times 1^{\circ}$ cells with:


## Atlas contents

- Monthly and annual maps of:
- Percentiles 50,95 and 100 of significant wave height, wind speed, mean period and sea surface temperature.
- Wind roses
- Frequencies of significant wave height over 2.5, 6 y 9 m - Frequencies of wind speed over 11.1, 17.3 y 24.4 m/s
- Climatic summaries for selected $1 \times 1^{\circ}$ cells with:


## Atlas contents

- Monthly and annual maps of:
- Percentiles 50,95 and 100 of significant wave height, wind speed, mean period and sea surface temperature.
- Wind roses
- Frequencies of significant wave height over 2.5, 6 y 9 m - Frequencies of wind speed over 11.1, 17.3 y $24.4 \mathrm{~m} / \mathrm{s}$
- Climatic summaries for selected $1 \times 1^{\circ}$ cells with:


## Atlas contents

- Monthly and annual maps of:
- Percentiles 50, 95 and 100 of significant wave height, wind speed, mean period and sea surface temperature.
- Wind roses
- Frequencies of significant wave height over 2.5, 6 y 9 m
- Climatic summaries for selected $1 \times 1^{\circ}$ cells with:


## Atlas contents

- Monthly and annual maps of:
- Percentiles 50,95 and 100 of significant wave height, wind speed, mean period and sea surface temperature.
- Wind roses
- Frequencies of significant wave height over 2.5, 6 y 9 m
- Frequencies of wind speed over 11.1, 17.3 y $24.4 \mathrm{~m} / \mathrm{s}$
- Climatic summaries for selected $1 \times 1^{\circ}$ cells with:


## Atlas contents

- Monthly and annual maps of:
- Percentiles 50, 95 and 100 of significant wave height, wind speed, mean period and sea surface temperature.
- Wind roses
- Frequencies of significant wave height over 2.5, 6 y 9 m
- Frequencies of wind speed over 11.1, 17.3 y $24.4 \mathrm{~m} / \mathrm{s}$
- Climatic summaries for selected $1 \times 1^{\circ}$ cells with:
- Frequency tables and boxplots of the above parameters.
- Cumulative percentile plots.
- Monthly and annual wind roses.


## Atlas contents

- Monthly and annual maps of:
- Percentiles 50, 95 and 100 of significant wave height, wind speed, mean period and sea surface temperature.
- Wind roses
- Frequencies of significant wave height over 2.5, 6 y 9 m
- Frequencies of wind speed over 11.1, 17.3 y $24.4 \mathrm{~m} / \mathrm{s}$
- Climatic summaries for selected $1 \times 1^{\circ}$ cells with:
- Frequency tables and boxplots of the above parameters.
- Cumulative percentile plots.
- Monthly and annual wind roses.


## Atlas contents

- Monthly and annual maps of:
- Percentiles 50, 95 and 100 of significant wave height, wind speed, mean period and sea surface temperature.
- Wind roses
- Frequencies of significant wave height over 2.5, 6 y 9 m
- Frequencies of wind speed over 11.1, 17.3 y $24.4 \mathrm{~m} / \mathrm{s}$
- Climatic summaries for selected $1 \times 1^{\circ}$ cells with:
- Frequency tables and boxplots of the above parameters.
- Cumulative percentile plots.
- Monthly and annual wind roses.


## Atlas contents

- Monthly and annual maps of:
- Percentiles 50, 95 and 100 of significant wave height, wind speed, mean period and sea surface temperature.
- Wind roses
- Frequencies of significant wave height over 2.5, 6 y 9 m
- Frequencies of wind speed over 11.1, 17.3 y $24.4 \mathrm{~m} / \mathrm{s}$
- Climatic summaries for selected $1 \times 1^{\circ}$ cells with:
- Frequency tables and boxplots of the above parameters.
- Cumulative percentile plots.
- Monthly and annual wind roses.


## $\%$ of $H_{s} \geq 2.5 \mathrm{~m}$

Frecuencia (\%) anual de oleaje igual o mayor a 2,5 m (mar gruesa) (1981-2010)


## Max. $H_{s}$ for 100 years R.P.

Máximos probables de altura significativa del oleaje ( m ) para un periodo de retorno de 100 años


## Wind roses

Rosas de los vientos (octubre, 1981-2010)


## SST (December p.95)

Temperatura del mar ( ${ }^{\circ} \mathrm{C}$ )
Percentil 95 (diciembre, 1981-2010)


## Boxplots

Altura significativa del oleaje


Periodo medio del oleaje




## Accumulated percentiles

Percentiles anuales 1981-2010 ( $41^{\circ} \mathrm{N}, 4^{\circ} \mathrm{E}$ )


## Monthly wind roses

Rosas mensuales de los vientos, 1981-2010 (41 $\left.{ }^{\circ} \mathrm{N}, 4^{\circ} \mathrm{E}\right)$


## Final remarks

- This tool is helping our production staff in their work related with the maritime environment.
- The interactive application gives more flexibility for acquiring maps and graphs for locations or thresholds not included in the Atlas.
- We acknowledge the ECMWF for the generation and maintenance of the ERA-Interim reanalysis.


## Final remarks

- This tool is helping our production staff in their work related with the maritime environment.
- The interactive application gives more flexibility for acquiring maps and graphs for locations or thresholds not included in the Atlas.
- We acknowledge the ECMWF for the generation and maintenance of the ERA-Interim reanalysis.


## Final remarks

- This tool is helping our production staff in their work related with the maritime environment.
- The interactive application gives more flexibility for acquiring maps and graphs for locations or thresholds not included in the Atlas.
- We acknowledge the ECMWF for the generation and maintenance of the ERA-Interim reanalysis.


## Climate Grid

Software for creating national climate data products and services
Dan Hollis, Ian Edwards, Mark McCarthy
Data Management Workshop, St Gallen, Switzerland, 28-30 October/2015

Met Office Hadley Centre

## Climate Grid

Aim:

Develop a portable, modular and traceable code base following open software standards to provide a tool kit for the generation, exploration and visualisation of UK climate statistics.


## Met Office



## Development process

## ) git



Test-driven development


## Iris 1.8

Python library for analysing and visualising meteorological and oceanographic data sets.
http://scitools.org.uk/iris/

## Climate Grid Components



## Met Office

## Gridding Overview



## Met Office

## Gridding Process



## Met Office

## Gridding Process

Convert to anomalies


## Re-combine regn model \& residuals

Convert to actuals

```
idw_actuals()
idw_anomalies()
idw_regression_residual()
idw_regression_residuals_anomalies()
```


## Met Office

## System Configuration

- Paths to system resources
- CF metadata
- Grid definition (extent, projection, resolution etc)
- Gridding method (by variable, month and run type)
- Legends and colours for maps

Indexed via 'short_name' = a string combining the temporal resolution and variable name

- e.g. monthly_maxtemp
- e.g. daily_rainfall
-System resources:
- Station metadata
- Product templates
- Region definitions (shapefiles and raster masks)
- Grids of the independent regression variables


## Climate Grid Components



## Met Office

## Grid Archives



> \grid\variable\year\mm.nc
> \station\variable\year\mm.nc
my_archive = GridArchive (path, ...)
combined_archive = GridArchiveHierarchy( finā̄_archive, provisional_archive, historic_archive)

## Climate Grid Components



## Met Office

## Products and Processes



## Met Office <br> Automation



## Met Office <br> Automation

```
extract_station_data()
 csv file
gridding()
 netCDF file
product_creation()
 png file
product_delivery()
```


## cron

Rose: A framework for managing and running meteorological suites.
http://metomi.github.io/ rose/doc/rose.html

## Met Office <br> Quality Control

Hadley Centre


## Current status

- Software has been used for July, August and September summaries
- No major problems but system is still bedding in (various small issues have needed fixing...)
- Work is ongoing in various areas:
- Memory issues when working with large networks
- Automation
-Quality control
-Batch processing e.g. multi-month runs
-Additional system tests
-Refactoring for open source
-Documentation Hadley Centre


## Next Steps: Sharing

Project information

Test Data	Acceptance Tests (cgtest)	
Sample Data	Climate Grid UK (cguk)	
	Climate Grid	pymidas
		Proprietary Open Source

- Transition plan
- Config tables

Documentation

- Climate Grid
- Climate Grid UK
- Climate Grid Acceptance Tests
- pymidas


## Met Office

## Next Steps: End-to-end



## Met Office

Hadley Centre

## Next Steps: Portability



## Met Office

## Next Steps: Methods



Re-combine regn model \& residuals

Convert to actuals

Alternate method 1

Alternate
method 2

## Summary

Met Office Hadley Centre

## Successful transition

Maintained continuity

Greater flexibility


Improved skills

Work in progress


Future collaboration
ncic@metoffice.gov.uk

# Producing a long-term gridded data set in Finland - uncertainty and spatio-temporal trends 

Juha Aalto, Pentti Pirinen, Kirsti Jylhä

10th EUMETNET Data Management Workshop, St. Gallen, Switzerland, 30.10.2015

## 1. Introduction and aims

- PLUMES consortium
- Task: create a high-quality daily gridded climate data set of the key variables across 1961-2010 ("FMI_ClimGrid_1.0")
- Focus on interpolation uncertainty
- Use gridded data to investigate temporal trends in climate
- Compare the results with existing data (E-OBS)


## 1. Introduction - gridded data

- Spatially continous data based on a set of observations - Most often based on a statistical model - Important applications: climate change studies, forest management, agriculture, biosphere modelling, permafrost ....


Observations


Spatial grid

Gridded data



## 2. Data - observations

-Seven climate variables:
-mean temperature (Tday)
-maximum temperature (Tmax)

- minimum temperature (Tmin)
- precipitation sum (Prec)
-mean relative humidity ( RH )
- air pressure ( $P$ )
-snow depth (Sn)
-Data sources:
- FMI database
-ECA\&D pan-European database - Sweden, Norway, Russian and Estonia


## 2. Data - observations







## 2. Data - quality control

- National operational QC
"Non-blended" ECA\&D series
-Misscodings, duplicates
-Local outlier detection protocol:


1. compare each value to local average and stdev (station in turn excluded)
2. Compare the local stdev to long-term monthly stdev (1961-2010)

## 2. Data - grid specifications

-Spatial resolution = $10 \mathrm{~km} \times 10 \mathrm{~km}$ -Euref-FIN TM35 (epsg: 3067)

- 5224 points (3364 inside, 1860 outside Finland)



## 2. Methods - kriging interpolation

- Kriging interpolates the value at given point using a weighted average of the know values inside a neighborhood -Weights are assigned by (decreasing) function of the distance, based on the spatial covariance structure
- Variogram is used to quantify the spatial dependency in the data



## 2. Data - background data

- Used as covariates in the interpolation model (i.e. trend model)
- Latitude and longitude



## 2. Methods - details

- Separate trend model was estimated for each day
- "Semi" climatological variogram models:
- $\quad$ Range $=$ monthly means of daily ranges (1961-2010)
- Separate sill for each day
- Nugget $=30 \%$ of the measurement precision (e.g. 0.03 for Temp)
- Exponential variogrammodels
- Global kriging


## 2. Methods - interpolating precipitation and snow

- High and potentially discrete variation vs. sparse observation network
- Satellite and radar data might improve
- Solution: interpolate the probability of precipitation / snow depth and combine with interpolated amounts



## 2. Methods - evaluation

-20 independent evaluation stations
-Compare the observed and interpolated values


## 3. Results - interpolation accuracy









## 3. Results - seasonal variation in accuracy



## 3. Results - interpolation accuracy

- Some meteorological conditions are more challenging to interpolate than others...



Temperature inversion?

## 3. Results - uncertainty

Sources of uncertainty:

- Observations
(measurements, network, inhomogeneities ...)
- Background variables (georeferencing, averaging...)
- Interpolation method
- 50 random permutation / day -> 50 different interpolations
- Daily uncertainty estimate for each variable



## 3. Results - a comparison with E-OBS






## 4. Trends in past climate



- Daily grid averages
-> seasonal / annual aggregates
- Most uncertain areas excluded from the trend analysis

Tday
${ }^{\circ} \mathrm{C}$ per decade
$0.40-0.43$
$0.35-0.40$
$0.30-0.35$
$-0.25-0.30$
$\square 0.02-0.25$
$\square$ High uncertainty

- not sign.


## 4. Trends in past climate



## Tmin

${ }^{\circ} \mathrm{C}$ per decade
0.70-0.87
0.55-0.70
0.40-0.55
$0.25-0.40$
0.01-0.25

High uncertainty

- not sign.



Sn
cm per decade
$-0.6--0.3$
$-1.0--0.6$
$-1.4--1.0$
$-1.8--1.4$
$-2.1--1.8$

High uncertainty

- not sign.


## 5. Conclusions

- Long-term gridded dataset were succesfully produced
- Daily permutation-based uncertainty estimates
- Clear, but locally varying signal of past climate change
- Wind and solar radiation in the future
- The dataset will be made freely available with regular updates
- Manuscript in progress...


## Computing environment

- $\mathbf{R}$ in linux server (FMI supercomputer "Voima")
- Required R-packages: gstat, sp, rgdal, raster, maptools, PresenceAbsence, Roracle
- Total time of calculations $\sim 6$ days / per variable


## More information:

juha.aalto@fmi.fi pentti.pirinen@fmi.fi

## Swiss Confederation



## Content

Introduction: motivation, method

## Results and evaluation



## Conclusion and outlook

## Content

## Introduction: motivation, method

## Results and evaluation

## Conclusion and outlook

## Introduction - Motivation

- Develop new datasets for monthly temperature and precipitation suitable for climate monitoring (regularly updated)
- (1864-) 1901-2010 (-now) and 1961-2010 (-now)
- Only with homogenized station data
- Continuous measurements (no gaps)
- Constant station density (same stations every time step)


## $\boldsymbol{\oplus}$ <br> Introduction - Motivation

- The amount of stations fulfilling all requirements is low

	Temperature	Precipitation
$1864-2010$	18	14
$1901-2010$	28	39
$1961-2010$	57	336




P, 1961-2010, 336 stations


P, 1901-2010, 39 stations


P, 1864-2010, 14 stations

## Introduction - Method



## $\boxplus \quad$ RSOI - Overview

- Reduced Space Optimal Interpolation (Kaplan etal., 1997, Schmidil etal. 2001, 2002; Schiemann et al., 2010; Masson et al., 2015)


Station data (sparse network) RECONSTRUCTION PERIOD (1901-2010) (transtormed if needed)
 (1981-2010) (transformed if needed)


Station data (sparse network) CALIBRATION PERIOD


Dimensionality reduction (truncation)

## $\oplus$ <br> Content

# Introduction: motivation, method 

## Results and evaluation



## Conclusion and outlook

## $\boldsymbol{\oplus}$ <br> RSOI - Results and evaluation

- Calibration period: 1981-2010
- Reconstruction period: 1961-2010, 1901-2010, 1864-2010
- Dimensionality reduction (truncation): 12
- Evaluation:
- Tests with changing calibration (length and period), truncation, data quality, stations amount
- Use of crossvalidation (leave-one-out): $x_{i, \text { reconstr }}, x_{i, o b s}$
- Mean absolute error (MAE)
- Mean-Squared Error Skill Score (MSESS)

$$
M A E=\frac{1}{n} \sum_{i=1}^{n}\left(\left|x_{i, \text { reconstr }}-x_{i, o b s s}\right|\right)
$$

$1=$ perfect reconstruction, $0=$ no skill

- Variance

$$
\text { MSESS }=1-\frac{\sum_{i=1}^{n}\left(x_{i, \text { reconstr }}-x_{i, o b s}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i, o b s}-\overline{x_{i, o b s}}\right)^{2}}
$$

- Trend


## $\pm \quad$ PCA

PC loading 1-91\%


PC loading 3-1\%


PC loading $2-5 \%$


0.012	
0.01	
	0.008
	0.006
	0.04
	0.002
0	0.002
	0.004
	0.006
	0.008
0.001	
0.012	

PC loading 4-1\%

(7) Reconstruction examples ${ }_{(\text {anomalies 1981-2010) }}$


11

## Reconstrucion examples (anomalies $1981-2010)$

Direct interpolation
Reconstruction


## Reconstrucion examples (anomalies 1981-2010)

Direct interpolation
Reconstruction


## $\oplus$ <br> Mean absolute error (degC)

t	Grid	\# stat	ALL	DJF	MAM	JJA	SON	\#
웅 응	Reconstr.	57	0.26	0.35	0.22	0.19	0.27	N
	Reconstr.	28	0.27	0.36	0.23	0.20	0.27	
	Direct grid	~85	0.28	0.39	0.23	0.21	0.29	
욱웃	Reconstr.	28	0.32	0.41	0.28	0.26	0.32	
			0.33	0.44	0.28	0.26	0.33	$\xrightarrow{\stackrel{\rightharpoonup}{\infty}}$
	Reconstr.	18	0.38	0.50	0.32	0.31	0.39	

## Mean absolute error (degC)

$M A E=\frac{1}{n} \sum_{i=1}^{n}\left(\left\|x_{i, r e c o n s t r}-x_{i, o b s}\right\|\right)$								
t	Grid	\# stat	ALL	DJF	MAM	JJA	SON	\#
$\begin{aligned} & \text { gi O } \\ & \text { O } \\ & \hline \end{aligned}$	Reconstr.	57	0.26	0.35	0.22	0.19	0.27	
	Reconstr.	28	0.27	0.36	0.23	0.20	0.27	
	Direct grid	~85	0.28	0.39	0.23	0.21	0.29	
$\begin{aligned} & \text { 윽응 } \end{aligned}$	Reconstr.	28	0.32	0.41	0.28	0.26	0.32	
			0.33	0.44	0.28	0.26	0.33	$\stackrel{+}{\infty}$
$\begin{aligned} & \text { to } \\ & \underset{\sim}{\circ} \text { O } \\ & \hline 1 \end{aligned}$	Reconstr.	18	0.38	0.50	0.32	0.31	0.39	

## Mean absolute error (degC)

$$
M A E=\frac{1}{n} \sum_{i=1}^{n}\left(\left|x_{i, r e c o n s t r}-x_{i, o b s}\right|\right)
$$

t	Grid	\# stat	ALL	DJF	MAM	JJA	SON	\#
$$	Reconstr.	57	0.26	0.35	0.22	0.19	0.27	N
	Reconstr.	28	0.27	0.36	0.23	0.20	0.27	
	Direct grid	~85	0.28	0.39	0.23	0.21	0.29	
윽 으N	Reconstr.	28	0.32	0.41	0.28	0.26	0.32	
			0.33	0.44	0.28	0.26	0.33	$\stackrel{+}{\infty}$
	Reconstr.	18	0.38	0.50	0.32	0.31	0.39	

## Mean absolute error (degC)

$$
M A E=\frac{1}{n} \sum_{i=1}^{n}\left(\left|x_{i, r e c o n s t r}-x_{i, o b s}\right|\right)
$$

t	Grid	\# stat	ALL	DJF	MAM	JJA	SON	\#
	Reconstr.	57	0.26	0.35	0.22	0.19	0.27	$\sim$$\infty$$n$$\stackrel{+}{+}$+
	Reconstr.	28	0.27	0.36	0.23	0.20	0.27	
	Direct grid	~85	0.28	0.39	0.23	0.21	0.29	
윽 으N	Reconstr.	28	0.32	0.41	0.28	0.26	0.32	
			0.33	0.44	0.28	0.26	0.33	$\stackrel{+}{\infty}$
	Reconstr.	18	0.38	0.50	0.32	0.31	0.39	

## Mean absolute error (degC)

$$
M A E=\frac{1}{n} \sum_{i=1}^{n}\left(\left|x_{i, r e c o n s t r}-x_{i, o b s}\right|\right)
$$

t	Grid	\# stat	ALL	DJF	MAM	JJA	SON	\#
$\begin{aligned} & \text { 잉 } \\ & \text { O } \\ & \hline \end{aligned}$	Reconstr.	57	0.26	0.35	0.22	0.19	0.27	N000$\stackrel{+}{+}$
	Reconstr.	28	0.27	0.36	0.23	0.20	0.27	
	Direct grid	~85	0.28	0.39	0.23	0.21	0.29	
윽응	Reconstr.	28	0.32	0.41	0.28	0.26	0.32	
			0.33	0.44	0.28	0.26	0.33	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \underset{\sim}{\oplus} \\ & \stackrel{+}{+} \end{aligned}\right.$
$\begin{aligned} & \mathbf{H}_{\circ}^{\circ} \mathrm{O} \\ & \underset{\sim}{\circ} \end{aligned}$	Reconstr.	18	0.38	0.50	0.32	0.31	0.39	

## $\oplus$ <br> Skill: MSESS 1901/1961-2010

Explained temporal variance

- Most of the stations have MSESS > 0.95


1961-2010, 57 stations


1901-2010, 28 stations

## Skill: MSESS 1901-2010

## Explained spatial variance



Explained variance fraction (28 stations)

MSESS	ALL	DJF	MAM	JJA	SON
Median	0.36	0.48	0.36	0.19	0.33
$q 0.9$	0.71	0.74	0.73	0.62	0.67
$q 0.1$	-0.20	0.08	-0.25	-0.38	-0.20

## $\oplus$ <br> Variance 1901-2010

Variance in time, 28 stations


## Trend 1961-2010

Theil-Sen trend estimate (degC/y)
Stippling: statistically not significant (0.05, Mann-Kendall)


Non homogenized data


Homogeneous data (28 stations)


## Trend 1864/1901-2010

Theil-Sen trend estimate (degC/y)
Stippling: statistically not significant (0.05, Mann-Kendall)


## Standard error




Standard deviation of difference reconstruction vs. direct interpolation

## Content

# Introduction: motivation, method 

## Results and evaluation



## Conclusion and outlook

## Conclusion and outlook

## RSOI method

- RSOI is an attractive method to benefit of short-term high-resolution information to reconstruct longer time scales with less observations available. Method suitable for complex terrain where variations are spatially anchored.
- Successful reconstruction of time series and spatial distribution of temperature
- The discrepancies between observations and reconstruction are relatively moderate (MAE $\approx 0.25$ )
- Reconstruction improves long-term consistency


## Outlook

- Additional analysis (compare with HISTALP,...)
- Develop a regularly updated climate monitoring product at MeteoSwiss
- Apply same method for precipitation fields (station homogenization ongoing)
- Potential for application in the entire Alpine Region


## $\oplus \quad$ RSOI - Details

## - Optimal interpolation

Find scores $\vec{a}_{t_{i}}$ (reconstruction period $t_{i}$ ) minimizing the cost function S

$$
\begin{aligned}
& \text { Gauge measurement Matrix with L eigenvalues of the } \\
& \text { (sparse network k) } \\
& \text { covariance matrix in the diagonal (from PCA) } \\
& \begin{array}{l}
S\left(\vec{a}_{t_{i}}\right)=\underbrace{\left(\mathbf{H} \vec{a}_{t_{i}}-\stackrel{\stackrel{\rightharpoonup}{x^{0}}}{t_{i}}\right.})^{T} \underbrace{\mathbf{R}^{-1}}\left(\mathbf{H} \vec{a}_{t_{i}} \cdot \overrightarrow{x^{0}} t_{t_{i}}\right)+\vec{a}_{t_{i}}{ }^{T}{ }^{+} \mathbf{C}^{-1} \\
\vec{a}_{t_{i}}
\end{array}
\end{aligned}
$$

Guarantee balance between regions with different station density and lowers weight of highly correlated gauges.
Disfavour high scores for high-order PC loadings

## $\boxplus \quad$ RSOI - Details



Find scores $\vec{a}_{t_{i}}$ (reconstruction period $t_{i}$ ) minimizing the cost function S


## Trend 1961-2010 ${ }_{(\mathrm{deg} / \mathrm{y})}$



Reconstruction 57 stations

Reconstruction 28 stations

Inhomogeneous data

## Spatial Interpolation of daily Temperature and Precipitation for the Fennoscandia

Cristian Lussana and Ole Einar Tveito(1)<br>Norwegian Meteorological Institute, Oslo

## Nordic Framework for

## Climate Services

E. Lōwendahl, E. Engstrōm, R. Ruuhela, H. Tuomenvirta, E. Forland, H.T. Tilley Tajet,
K.A. Iden, H. Bjornsson, C. Kern-Hansen and J. Hesselbjerg Christensen
 www.met.no www.fmi.fi www.dmi.dk www.vedur.is

## http://blog.fmi.fi/nordmet/



## Nordic Gridded Climate Dataset

## NGCD

- An observation gridded dataset for temperature and precipitation covering Finland, Sweden and Norway.
- Spatial resolution $1 \mathrm{Km} \times 1 \mathrm{Km}$
- CRS: EPSG Projection 3035 - ETRS89 / ETRS-LAEA
- Temporal resolution: daily
- Time range: 1981-2010
- Data sources: ECA\&D, eklima.met.no, SMHI, FMI
- Nordic observation gridded dataset will be an outcome of the Nordic Framework for Climate Services (SMHI, FMI, MI, (DMI,IMO))
- NGCD first versions: 2 from MET Norway, 1 from FMI and 1 from SMHI


## RR - daily precipitation

Meteorologisk institutt

## $+$



ECAED

1971/2010 - Daily Precipitation - Number of Observations TOT (Fl+NO+SE) 3652 = 820 fi+ 1270 no+ 1562 se


24h PREC, Element descriptions in

## ECA\&D:

Norway: id=RR2
, (D-1) 06UTC -> D 06UTC;
Sweden: id=RR9
, D 06UTC -> (D+1) 06UTC;
. Finland: id=RR5
D 07.30 -> (D+1) 07.30UTC;

## TG - daily mean temperature

Meteorologisk institutt
## $+$



## European Climate Assessment Dataset

ECAED
1971/2010 - Daily Mean Temperature - Number of Observations TOT (Fl+NO+SE) $1776=373 \mathrm{fi}+606$ no+ 797 se
Daily mean temperature, Element
 descriptions in ECA\&D:
Norway: id=TG9
, (D-1) 6UTC->D 6UTC;
Sweden: id=TG6
, average using TN,TX,06,12,18;
. Finland: id=TG6
» average using 8 observations;

## NGCD @ MET Norway

.Daily mean Temperature
, Residual Kriging (RK)
, Optimal Interpolation (OI)
-Daily accumulated precipitation
, Multi-Scale Optimal Interpolation (MSOI)

Both OI products includes an automatic data quality control procedure (described in poster \#14, Data Quality Control of Temperature and Precipitation in-situ observations based on Spatial Interpolation, Cristian Lussana and Ole Einar Tveito)

## TEMP1d: Residual Kriging

## Residual kriging:

Kriging (or any spatial interpolation method)


- $T=T S+T D$ (linear regression)
- Trend predictors:
- Altitude (station)
- Mean altitude within a 20 km circle around the station
- Minimum altitude within a 20 km circle around the station
- Longitude
- Latitude
- Linear stepwise regression is used to define the trend.


## Grids of the independent variables

Longitude



DEM


DEM_MEAN


DEM_MIN
Norwegian
Meteorological Institute

## Regression coefficients



## Trend $\boldsymbol{\rightarrow}$ climatological first guess



## TEMP1d: OI

Large(coarser) scale trend estimation


Spatial Interpolation: Small Scale. Correlation functions are defined a priori in the Optimal Interpolation scheme.


Different weights for vertical and horizontal distances.

Ol introduces the Local(finer) scale

## TEMP1d: OI



## NGCD.OI @ MET Norway - TEMP1d - Evaluation



## NGCD.RK @ MET Norway - TEMP1d - Evaluation



## NGCD.OI @ MET Norway - TEMP1d - Evaluation

influence of station density/distribution


## NGCD.RK @ MET Norway - TEMP1d - Evaluation

influence of station density/distribution



## Spatial Interpolation Method based on Multi-scale Optimal Interpolation (Prec)

Step 0: Identification of Precipitation Events (Observed Areas of Precipitation) (given the Station distribution)


## Spatial Interpolation Method based on Multi-scale Optimal Interpolation (Prec)

Given a single Event, the spatial interpolation is based on an iterative process:

Coarser


Chinese Whisper


Given a predefined (horizontal) spatial scale.
Ol assumptions:

- Additive error model:
- obs scale $=$ truth $_{\text {scale }}+$ err $_{\text {scale }}$
- back $_{\text {scale }}=$ truth $_{\text {scale }}+$ err $_{\text {scale }}$
- Gaussian errors:
- err $_{\text {scale }}=\mathrm{N}(0$, CovMat $)$
- CovMat $=\mathrm{f}($ scale,Vertical coord $)$
- OI (through leave-one-out cross validation) is used to optimize the influence of the vertical coordinate in the error covariance matrix

Finer
scale



1995.06.10 PREC1d daily accumulated precipitation [UTC]


## Case study: the New Year's Day Storm 1992



Figure 2. Simplified weather map for 0100 hours NLT 01/01/1992.

Aune, B., and K. Harstveit. "The storm of January 1st 1992." DNMI Rapport NR 23 (1992): 92.
1992.01.01 PREC1d daily accumulated precipitation [UTC]


1992.01.01 - TEMP1d - daily mean temperature [06-06 UTC]


## Summary

Within the NFCS, NORDGRID activity, we're establishing several observation-based gridded dataset of daily precipitation and temperature for the Fennoscandia region covering the period 1981-2010.

Given the station distribution we expect to correctly describe the TEMP/PREC state down to the meso-beta scale (20-200Km).

Bayesian/Residual Kriging spatial interpolation of precipitation and temperature show encouraging results.

- Temp: on the average, Temperature analysis uncertainty is estimated to be between $0.6{ }^{\circ} \mathrm{C}$ in the summer and $1.5{ }^{\circ} \mathrm{C}$ in the winter.
- Prec: Visual inspection of precipitation fields show realistic feature. Quantitative evaluation needed.


# MAPPING MINIMUM DAILY TEMPERATURE IN SPAIN USING KRIGING WITH EXTERNAL DRIFT 

Andrés CHAZARRA, José Vicente MORENO, Roser BOTEY
Agencia Estatal de Meteorología (AEMET)
achazarrab@aemet.es

## Introduction

- The objective is to describe the methodology that has been applied in the Spanish Meteorological Agency (AEMET) for obtaining high-resolution gridded fields of daily minimum temperature in Spain.
- This project began in 2013 when AEMET was requested to generate highresolution gridded fields of daily minimum temperature for agricultural applications for the period 2002-2013.
- Spatial interpolation of daily temperature data $\rightarrow$ a more complex problem than the case of monthly or annual mean temperature data. Very often we have to deal with temperature inversions and other local phenomena, specially in mountainous regions.
- Mountainous regions are often data-sparse in Spain $\rightarrow$ it is necessary to consider external variables, such as the elevation, in the spatial interpolation process.
- After trying several spatial interpolation methods, kriging with external drift with elevation and distance to the coast as external variables was chosen.


## Methodology

- Data: daily temperature data from Spain - not including the Canary Islands
- from the twelve-year period 2002-2013.


Study area and location of the stations ( $\sim 1700$ stations)

- Spatial interpolation method: Kriging With External Drift (KED) with elevation and distance to the coast as external variables. Exponential semivariogram model.
- Other spatial interpolation methods for comparison:
- Inverse Distance Weighted (IDW).
- Ordinary Kriging (OK).
- Regression Kriging (RK) with elevation and distance to the coast.
- Cell size: $1 \times 1 \mathrm{~km}$.
- Software: free open source SAGA GIS.
- $365 \times 12+3=4383$ gridded fields of daily minimum temperature were created by KED

Mapping Minimum Daily Temperature In Spain Using Kriging With External Drift

Example: daily minimum temperature 10 January 2012


Mapping Minimum Daily Temperature In Spain Using Kriging With External Drift
Visual comparison: daily minimum temperature 10 January 2012


## Mapping Minimum Daily Temperature In Spain Using Kriging With External Drift

Daily minimum temperature 10 January 2012
Community of Madrid


Minimum temperature data (black) and altitude of the stations (red)

## Mapping Minimum Daily Temperature In Spain Using Kriging With External Drift

Daily minimum temperature 10 January 2012
Community of Madrid


IDW

## Mapping Minimum Daily Temperature In Spain Using Kriging With External Drift

Daily minimum temperature 10 January 2012
Community of Madrid


## Mapping Minimum Daily Temperature In Spain Using Kriging With External Drift

Daily minimum temperature 10 January 2012
Community of Madrid


## Mapping Minimum Daily Temperature In Spain Using Kriging With External Drift

Daily minimum temperature 10 January 2012
Community of Madrid


## Mapping Minimum Daily Temperature In Spain Using Kriging With External Drift

- From a visual analysis, we can see that the differences between the methods are generally small in plain areas.
- KED provides better looking interpolations in mountainous regions with high enough data density, as it is able to model properly local temperature inversions.
- However, we have detected that KED can lead to some exaggerated extrapolation effects in areas with scarce and anomalous data at the same time.


## Validation

- A validation process was made by taking apart $25 \%$ of the data and repeating the process with the 75\% remaining data for every day of the year 2012 (366 days).

- The mean absolute error (MAE), the root mean square error (RMSE) and the correlation coefficient $(R)$ between the observed and predicted values were used to measure the skill of the interpolation methods.

	R	MAE $\left({ }^{\circ} \mathrm{C}\right)$	RMSE $\left({ }^{\circ} \mathrm{C}\right)$
IDW	0.859	1.424	1.468
KO	0.858	1.437	1.480
RK	0.858	1.441	1.483
KED	0.865	1.402	1.444

$R=$ Pearson correlation coefficient
MAE = Mean absolute error
RMSE = Root mean square error

- KED provides the best estimations for the minimum daily temperature, although the differences with the other methods are small when considering the whole study area.
- However, the differences between KED and the other methods would be greater if only mountainous regions were considered in the validation.


## Some examples of derived products

- Several map products have been generated for agroclimatological purposes by combining daily gridded temperature fields from the period 2002-2012


Mean annual number of frost days (2002-2012)


Mean annual probability of reaching temperatures below $0^{\circ} \mathrm{C}$
(2002-2012)

Mapping Minimum Daily Temperature In Spain Using Kriging With External Drift


Average first and last annual frost date (2002-2012)


First and last frost date recorded on the period 2002-2012

## Conclusions

- Kriging with External Drift with altitude and distance to the coast as external variables has been proved to be an appropriate method for obtaining gridded fields of daily minimum temperature data in Spain.
- However, it must be considered that this method can lead to exaggerated extrapolation effects in areas with scarce and anomalous data at the same time.
- The same method has been also applied successfully to daily maximum temperature data.
- We are currently generating gridded fields of daily minimum and maximum temperature over a longer period of time (1981-2015)

Mapping Minimum Daily Temperature In Spain Using Kriging With External Drift

## Thank you for your attention!

## Mapping Minimum Daily Temperature In Spain Using Kriging With External Drift

## References

- Agencia Estatal de Meteorología and Instituto de Meteorología de Portugal (2011). Atlas Climático Ibérico. Agencia Estatal de Meteorología. Ministerio de Agricultura, Alimentación y Medio Ambiente.
- Agencia Estatal de Meteorología and Instituto de Meteorología de Portugal (2012). Atlas Climático de los Archipiélagos de Canarias, Madeira y Azores. Agencia Estatal de Meteorología. Ministerio de Agricultura, Alimentación y Medio Ambiente.
- Barry, R.G. (2008). Mountain Weather and Climate. Cambridge University Press, Cambridge, UK.
- Benavides, R., Montes, F., Rubio, A. and Osoro, K. (2007). Geostatistical modelling of air temperature in mountainous region of northern Spain. Agricultural \& Forest Meteorology 146: 173-188.
- Chazarra, A. (2014). Interpolación especial de la temperatura minima diaria mediante krigeado universal. XXXIII Jornadas Científicas de la AME, Oviedo. Asociación Meteorológica Española.
- Dodson, R. and Marks, D. (1997). Daily air temperature interpolated at high spatial resolution over a large mountainous region. Journal: Climate Research, vol. 8, pp. 1-20.


## Mapping Minimum Daily Temperature In Spain Using Kriging With External Drift

- Eskelson, B.N.I., Anderson, P.D., Hagar, J.C. and Temesgen, H. (2011). Geostatistical modeling of riparian forest microclimate and its implications for sampling. Canadian Journal of Forest Research 41:974-985
- Goovaerts, P. (1997). Geostatistics for Natural Resources. Oxford University Press.
- Jabot, E., Zin, I., Lebel, T., Gautheron, A. and Obled, C. (2012). Spatial interpolation of sub-daily air temperatures for snow and hydrologic applications in mesoscale Alpine catchments. Hydrol. Process., 26: 2618-2630. doi: 10.1002/hyp. 9423
- Hudson, G. and Wackernagel, H. (1994). Mapping temperature using kriging with external drift: Theory and an example from Scotland. Int. J. Climatol., 14: 77-91. doi: 10.1002/joc.3370140107
- Majani, B.S. (2007). Analysis of external drift kriging algorithm with application to precipitation in complex orography. International Institute for Geo-Information Science and Earth Observation Enschede, The Netherlands.
- Martínez, L., Moreno, J.V., Chazarra, A., Gallego, T., Avello, M.E. and Botey, R. (2015). Mapas de riesgo: heladas y horas frío en la España Peninsular (periodo 2002-2012). Agencia Estatal de Meteorología.


## PREPARING CLIMATE INDICATORS TO ASSESS THE IMPACT OF EXTREME WEATHER EVENTS ON CRITICAL INFRASTRUCTURES AND ON TOURISM IN HUNGARY <br> Mónika Lakatos, lakatos.m@met.hu, Hungarian Meteorological Service (OMSZ) <br> Thanks for contribution to Annamária Marton, Tamás Kovács, Tamás Szentimrey

$10^{\text {th }}$ EUMETNET Data Management Workshop - "High quality climate data - the foundation of Climate Services, St. Gallen, Switzerland, 28-30 October, 2015

## Motivation

- 2009-2014 Programme of EEA: Programme for Adaptation to climate change in Hungary - National Adaptation Geo-information System (NAGIS) in Hungary (see poster 43)
- NAGIS: Homogenized gridded dataset from meteorological observations for 1961-2010 and climate projections for 20212050 and 2071-2100
- Extension of the NAGIS for further sectors: KRITéR-CRIGiS project: Vulnerability/Impact Studies with a focus on Tourism and Critical Infrastructures
- For targeted and sustainable adaptation high quality climate information is needed


## Objectives

- The KRITéR-CRIGiS project is focusing (i) heatwave-induced excess mortality, impacts of (ii) extreme weather events on road accidents, and (iii) of climatic conditions on tourism
- Identification of climate indicators to assess the impact of
(ii) extreme weather events on road accidents in winter
(iii) of climatic conditions on tourism
- Results for observational dataset



## National Adaptation Geoinformation System (NAGIS)

Observations:
1961-2010
CarpatClimHu daily grids spatial resolution: $0.1^{\circ}$
several basic meteorological variables and climate indicators

Regional Climate model simulations:
2021-2050: „short-term"
planning and 2071-2100: longterm strategy


NAGIS

## CarpatClim project



Homogenized and griddded by MASH and MISH

## CarpatClim - CarpatClimHu



# IDENTIFICATION OF CLIMATE INDICATORS TO ASSESS THE IMPACT OF SEVERE WEATHER ON PUBLIC ROAD ACCIDENTS IN WINTER 

# Cooperation with Disaster Management accidents statistics 2011-2014 

## Identification of ${ }^{-}$ severe winter

weather parameters

8 Jászberény

## Filtering:

Blizzard, wind, fog, icy roads, snowy, slippery road, strong wind, snowfall, poor vision, large amounts of snow

Daily weather reports

Literature
Media reports

Warning practices
\#\#\# Debrecen 490 Tiszavasvári 494 Kaposvár

Esemény típusa EOVX EOV Y Észlelés dátuma Műszaki mentés 240053712356 2012-01-01 00:10:00.000 Közút nentés 138376774506 2012-01-01 00:38:00.000 Közút nentés 232404659607 2012-01-01 01:24:00.000 Közút 234192656013 2012-01-01 01:29:00.000 Közút entés 145956458605 2012-01-01 09:51:00.000 Közút entés 188428 639703 2012-01-01 02:01:00.000 Közút entés 256972678527 2012-01-03 11:00:00.000 Közút nentés 85411668434 2012-01-03 11:53:00.000 Közút entés 231602466153 2012-01-03 16:10:00.000 Közút entés 262988465730 2012-01-03 17:02:00.000 Közút entés 254303634754 2012-01-03 21:36:00.000 Közút entés 176201482729 2012-01-04 07:01:00.000 Közút entés 114558757211 2012-01-04 00:20:00.000 Közút entés 205771608802 2012-01-04 10:19:00.000 Közút entés 172979482147 2012-01-04 08:00:00.000 Közút entés 223264733000 2012-01-04 08:13:00.000 Közút nentés 231405648178 2012-01-04 13:16:00.000 Közút nentés 102088500253 2012-01-04 17:12:00.000 Közút entés 226037476638 2012-01-04 08:26:00.000 Közút nentés 115776502263 2012-01-04 09:34:00.000 Közút entés 242288501943 2012-01-04 12:35:00.000 Közút nentés 250980831163 2012-01-04 13:50:00.000 Közút nentés 260503658556 2012-01-04 14:40:00.000 Közút entés 292732822719 2012-01-04 15:56:00.000 Közút nentés 201522599487 2012-01-04 17:21:00.000 Közút entés 246236849123 2012-05-03 15:00:00.000 Közút nentés 289032817431 2012-01-05 04:45:00.000 Közút Műszaki Múszaki mentés 117861554601 2012-01-05 07:20:00.000 Közút

Helyszín Káreset fajtája Közúti baleset Közúti baleset Közúti baleset NULL Közúti baleset Közúti baleset Közúti baleset Közúti baleset Közúti baleset Egyéb Közúti baleset Veszélyes anyago Közúti baleset Közúti baleset Közúti baleset Közúti baleset Közúti baleset Közúti baleset

## Megjegyzés

A helyszínen, egy szgk. az út । A jelzett helyen egy wartbur, A jh.-en szgk.(KOzma Zoltán : A jh.-en buszmegállóban sárॄ A jelzett helyen egy Peugeot A jelzett helyen egy VW Polo Jh.SUZUKI SWIFT tip. szgk. (fr A jelzett helyen két személy: A jelzett helyen egy Suzuki S A jelzett helyen egy MAN típ A jelzett helyen egy opel om A jelzett helyen egy, Renault Jelzett helyen egy Toyota Co। A jelzett helyen egy Chevrols EGERSZEG/1, EGERSZEG/2, EG A helyszínen egy Skoda Fabia Jelzett helyen Citroen Saxo ti A jelzett helyen egy Opel Ast A jelzett helyen egy Renault A helyszínen egy SUZUKI SWI A jelzet helyen egy Fiat Punt A jelzett helyen, 3316-os út 3 A helyszínen a EBL-612 frsz.-í A jelzett helyen egy KKG-174 A jelzett helyen Ford Fiesta f Jelzett helyen Szlovák forgalı A jelzett helyen egy VW Tran Toponár és Kaposfüred közti

## Indicators for sever

winter weather situations

TAO: Tmean $\leq 0^{\circ} \mathrm{C}$
TA-7 Tmean $\leq-7{ }^{\circ} \mathrm{C}$

TOR1: Tmean $\leq 0^{\circ} \mathrm{C}$ and Prec $\geq 1 \mathrm{~mm}$


Monthly, sesonal and winter half year


## Zero crossing days

## ZC-JAN, 1961-1990



## ZC-JAN 1981-2010



# Zero crossing days with precipitation 

ZCP-DJF 1961-1990
ZCP-DJF 1981-2010


## Blizzard 14-15 March 2013




2000-2010
Threshold for blizzard: $\operatorname{Ta} \leq 0^{\circ} \mathrm{C}$, Snow depth $\geq 10 \mathrm{~cm}, F x \geq 17 \mathrm{~m} / \mathrm{s}$

## E-OBS - Ice days 2000



Smoothed extremes due to interpolation? Not necessarily!

Additive (Linear) Interpolation
Linear Interpolation Formula:
$\hat{Z}\left(\mathbf{s}_{0}, t\right)=\lambda_{0}+\sum_{i=1}^{M} \lambda_{i} \cdot Z\left(\mathbf{s}_{i}, t\right)$
where $\sum_{i=1}^{M} \lambda_{i}=1$, because of unknown climate change

Optimal Interpolation Parameters :
$\lambda_{0}, \quad \lambda_{i}(i=1, \ldots, M)$ minimize MSE.

## Inadequate formulas - Smoothed extremes

- Inverse Distance Weighting (IDW), $\lambda_{0}=0, \lambda_{i}(i=1, \ldots, M)$ not optimal
- Ordinary kriging, $\lambda_{0}=0$

Adequate formulas:

- Universal kriging,
- Regression (residual, detrended) kriging - MISH


## TOURISM CLIMATE

## Tourism Climate Index (Mieczkowski, Z, 1985)

$$
\mathrm{TCI}=8 \mathrm{Cl}_{\mathrm{d}}+2 \mathrm{Cl}_{\mathrm{a}}+4 \mathrm{R}+4 \mathrm{~S}+2 \mathrm{~W}
$$

$\mathbf{C i} \mathbf{i}_{\mathrm{d}}$ daytime comfort index
$\mathrm{Cl}_{\mathrm{a}}$ daily comfort index
R: precipitation
S: sunshine duration
W: wind speed

$$
\text { relhumMin }=100 \frac{\mathrm{e}}{\mathrm{eSatTmax}}
$$

Ref: UK Climate Projections NATIONAL CASE STUDY, What could tomorrow's weather and climate look like for tourism in the South West of England?

Additional derived parameter in CarpatClim


# TCI May in different standard periods 

## Increasing „ideal" region in May particularly at South part of the region

$\square$	Unfavourable
$\square$	Marginal
$\square$	Acceptable
$\square$	Good
$\square \square$	Very good
$\square \square$	Excellent
$\square$	Ideal

## Further tasks

- Computation of indicators for the ALADIN-Climate regional climate model outputs for 2021-2050 and 2071-2100
- Modified TCI and computation of the CIT


## Thank you for your attention!

## New Austrian Climate Scenarios

Downscaled and improved data for key climate parameters and climate indices

Chimani B., Heinrich G., Kienberger S., Leuprecht A.,
Lexer A., Hofstätter M., Salzmann M., Poetsch M.S., Spiekermann.R., Truhetz H.


## Aim

- Concepts to adaption to climate change need high quality, high resolution climatological data
- Federation of Austria and all provinces

- Creation and Interpretation of high resolution climate information on past, present and future and climate changes

UNI

## Observational Data

5 Parameters - daily base:

- Temperature $\mathrm{min} / \mathrm{max}$
- Precipitation
- Global Radiation
- Sunshine Duration

Tageshöchstwert der Lufttemperatur [ ${ }^{C} \mathrm{C}$ ]


4-20 „flag-ship" stations: 1900-2015

40 weather stations:
1961-2015


## Climate Model Data

EURO-Cordex:
29 groups, 10 RCMs,13GCMs (from CMIP5) =>
33 (available) $/ 79$ (planned) simulations in 50 km resolution
29(available)/63(planned) simulations in 12.5 km resolution

Used in Project:
12.5 km resolution

3 representative concentration pathways:

- RCP 2.6: 1 model result
- RCP 4.5: 14 model results
- RCP 8.5: 14 model results

- Downscaling of RCMs to 1 km with Quantile mapping (QM)

- Downscaling of RCMs to 1 km with Quantile mapping (QM)
- Calibration with observational data in 1 km resolution
- Climate model is downscaled using calibration
- => statistical characteristics (bias) are corrected, but physical characteristics of the model do not change

Climate parameter	resolution	period	quality
Tmin	$1 \mathrm{~km}(12.5 \mathrm{~km})$	$1971-2100$	Bias corrected (uncorrected)
Tmax	$1 \mathrm{~km}(12.5 \mathrm{~km})$	$1971-2100$	Bias corrected (uncorrected)
Tmean	$1 \mathrm{~km}(12.5 \mathrm{~km})$	$1971-2100$	Bias corrected (uncorrected)
Precipitation	$1 \mathrm{~km}(12.5 \mathrm{~km})$	$1971-2100$	Bias corrected (uncorrected)
Global radiation	$1 \mathrm{~km}(12.5 \mathrm{~km})$	$1971-2100$	Bias corrected (uncorrected)
Rel. humidity	stations	$1971-2100$	Bias corrected
Wind velocity	stations	$1971-2100$	Bias corrected
Global radiation,   Tmin, Tmax, Tmean,   precipitation	stations	$1971-2100$	Bias corrected
Rel. humidity	12.5 km	$1971-2100$	uncorrected
Wind velocity	12.5 km	$1971-2100$	uncorrected

## Climate Indices

## TEMPERATURE INDICES 1

1) TM
2) ST 25
3) HT 30
4) KYE
5) TN2O
6) HWDI
7) CSDI
8) HHM
mean temperature summer days
heat days
kysely heat episode
tropical nights
heat wave duration
cold spell duration
normalized anomalies

## TEMPERATURE INDICES 2

9) GSL
10) GSLt
11) GSLrr
12) GSLfo
13) FLfd
14) FDO
15) IDO
growing season length mean temperature in GS
total precipitation in GS
frost days in GS
frost days in flowering period
frost days $\left(T_{\text {min }}<0^{\circ}\right)$
ice days $\left(T_{\max }<0^{\circ}\right)$
16) SCO5
17) SC20
18) RG
19) SD
20) ff95d
21) ff98d
22) ff95a
23) ff98a

## SPECIAL INDICES

snow cover $>5 \mathrm{~cm}$ days
snow cover>20cm days
global radiation
sunshine duration
gale wind speed
storm wind speed
gale wind days
storm wind days

## PRECIPITATION INDICES

16) RR total precipitation
17) DD wet days (>1mm)
18) DD\#p wet days (>30/60/90/95 perctile)
19) R\#p precipitation intensity on wet days
20) Rx1d maximum daily precipitation totals
21) Rx5d maximum 5-day precipitation totals
22) CDD1 consecutive dry days $<1 \mathrm{~mm}$
23) CWD1 consecutive wet days $>1 \mathrm{~mm}$
special episodes
base period:
daily, monthly, seasonal, annual,

Calculated for observational and model data


## Examples for observational data

1961-2011
mean seasonal precipitation (JJA)

DD30p
days with RR> 30pct (JJA)

## Uncertainties



## Caused by:

- Internal variability
- Future human activities (greenhouse gas emission,..)
- Modell
uncertainties
aus: IPCC 2013



## Uncertainty assessment: for each grid point and RCP



Robustness of signal: percentage of model runs with the same sign as the median [e.g.:10/14 $\rightarrow 71 \%$ ]

Significance of signal: percentage of statistically significant realisations with the same sign as median [e.g.:6/10 $\rightarrow 60 \%$ ]

Comparison to Natural Variability: Is median of climate change signals within the standard deviation of the observations?

Climate chance signal of one model realization $\star \star$ statistically significant
$\star$ statistically insignificant
O ensemble median ( 14 model realizations)

## Presentation of results

- Factsheets for federal state, provinces and single municipalities including expert assessments

$\frac{\text { Wegener Center }}{}$
UNI


## Availability of Results

- Climate model data (grids/stations)
$\rightarrow$ Available as ncdf from CCCA-Datacentre (as soon as data and datacentre available, ~March 2016)
- Climate indices
- Climate change signals and uncertainties Meteorologie
Geodynamik


## Citizen Science and Phenology a showcase from Austria

Helfried Scheifinger ${ }^{1}$, Benjamin Dauth ${ }^{2}$, Florian Heigl| ${ }^{2}$, Thomas Hübner ${ }^{1}$, Susanne Käfer ${ }^{3}$, Elisabeth Koch ${ }^{1}$, Klaus Wanninger ${ }^{4}$, Daniel Wuttej ${ }^{4}$, Ursula Weiser ${ }^{1}$, Johann Zaller ${ }^{2}$
1 ZAMG, 2 Univ. for Natural Resources \& Life Sciences, 3 ÖKOLOG, 4 LACON

- Landschaftsplanung u. Consulting: all Vienna, Austria


## www.naturverrueckt.at www.phenowatch.at

## Overview



- CS definition
- CS history \& recent development
- NaturVerrückt
- Farbverrückt
- Lessons learned

CS definition (SOCIENTIZE Consortium, 2013)

- Citizen Science refers to the general public engagement in scientific research activities when citizens actively contribute to science either with their intellectual effort or surrounding knowledge or with their tools and resources.
- Citizen scientists provide experimental data and facilities for researchers, raise new questions and cocreate a new scientific culture
- Citizen scientists acquire new learning and skills, and deeper understanding of the scientific work in an appealing way

CS definition (SOCIENTIZE Consortium, 2013)

- As a result of this open, networked and trans-disciplinary scenario, science-society-policy interactions are improved leading to a more democratic research based on evidence-informed decision making


## Some history of CS \& phenology




## Recent development CS




## Recent development CS



Internet \& Crowd sourcing
Three factors responsible for the great "explosion" of activity
Easy available technical tools for dissemination of information about projects and gathering data from the public
The increasing realisation among professional scientists that the public represent a free source of labour, skills, computational power and even finance

If we want to continue to spend taxpayers' money, it is in scientists' own interest to make sure that the public appreciates the value of what they are paying for. Undoubtedly the best way for the public to understand and appreciate science is to participate in it.

## NaturVerrückt

Impact of weather and climate on the phenology of indigenous woody plants

Students from 5 agricultural schools in Lower Austria track the seasonal development of 11 native plants and its weather/climate dependence.

Main objectives of this project:

- Observation of phenological events from ecological important native plants
- Study of the weather/climate impact on seasonal development
- Development of new methods for data acquisition - Apps

The timing of seasonal activities of animals and plants is perhaps the simplest process in which to track changes in the ecology of species in response to climate change" (IPCC 2007).

## NaturVerrückt



## Involvement of teachers and students

Planting of the hedge 1 year before


## NaturVerrückt



## Involvement of teachers and students

## Workshop teachers/scientific team



## NaturVerrückt



Involvement of teachers and students

Logo competition


## NaturVerrückt



Involvement of teachers and students

## Weather station



## NaturVerrückt



Involvement of teachers and students

Workshop with students twice a semester


## NaturVerrückt



## Involvement of teachers and students

Workshop with students twice a semester


## NaturVerrückt



Involvement of teachers and students

Phenological observations




## Gemeine Hasel

Oder auch: Haselstrauch, HaselnussstrauchWissenschaftlicher Name: Corylus avellana


Hier findet man das Gehölz
Die Hasel ist haufig anzutreffen. Sie wachst in lichten Walderm, an Waldranderm und in Feldhecken. Sie ist eine Licht. pflanze, vertragt aber auch mabigen Schatten. Das Areal der Hasel umfasst große Teile Europas und Kleinasiens sowie den
Kauksus. Im Norden Europas reicht das Verbreitungsgebetet Kauksus. im Norden

## So erkennt man das Gehölz

## Im Winter:

-mannliche Bloten (Katzchen) hangen wie worstchen bereits im Winter von den Zweigen und sind dann gelb

- junge zweige drosig beharart, knospen eiformig - vielstammiger, buschiger strauch


## In der Vegetationsperiode

- Blatter 6-10 cm lang

Blatter unterseits auf den groberen, Blattnerven behaart

- Herbstaspekt schon gelblich bis gelbbrau


## Doppelgănger:

Die baumformig wachsende Baum-Hasel (Coryius columa) Die baumformig wachsende Baum-Hasel (Cary hus coh gelegentlich als Zierbaum kultiviert.

## Wer steht drauf?

Die Haselnusse sind Nahrung for eine Vielzahl verschiedener Tierarten. Gut fur die Hasel denn die Nasse werden deshalb von Kleinsaugern (Eichhönchen, Bilchen, Mausen) und Vogeln (Kleibern und Hahern) verbreitet. Die Haselmaus ist sogar nach ihr benannt. Der pollen wird auch gerne von Bienen gesammelt, obwohl die Insekten nichts zur Bestaubung beitragen!

## Wofïr taugt das Gehölz?

- Frachte der Hasel sind essbar
- Zweige sind sehr biegsam, weshalb sich damit tolle Bugen basteln lassen
- Haseln kann man auf stock setzen (also knapp aber dem Boden abschneiden), sie wachsen immer wieder nach


## AUF'S BROT

Ohne Haselnüse gäbe es keine Nutella, se sind nämich eine der ABER: Die meisten Hase inisse sind wone nahen Verwandten, der Lambertshase, Wisenschofter nennen sie Corylus maxima.


## ZWEI MILIONEN

Die Hasel butet den Vofriting en Se bivtrolso wenn
 se das macim not dicen kein Benen oder andereinselter -so fïh im Jahr sind ouch noch forst kene unterwegs. Die Hosel widd vom Wind betaubt und wennes
der Boumenoch nicht ouggetrieben sind, funktioniet das der Baumenoch nich ouge vie ben sind, jumion hent beschertviden al eng schen Menschen ober trürende Augen und eine rinnende Nase, Ubigens: Eincein
Alite enthat 2 Millonen Pollentome. Hatchil MAXNCHEN \& WEIBCHEN Andersals bei welen anderen Cehök
ares
 sendoch teme rote rideten herruuss chaven 4

## Gewöhnlicher liguster

Oder auch: Rainweide, Tintenbeerstrauch
Wissenschaftlicher Name: Ligustrum vulgare

## Hier findet man das Gehölz

Der Gewohnliche Liguster ist die einzige in Europa heimische Liguster-Art. Er ist relativ anspruchslos und kommt von der Ebene bis in untere Gebirgslagen ( 1.000 m ) vor. Bevorzugte Standorte sind trockenwarme, kalkreiche, gut mit Nahrstoffen versorgte Boden. Man findet den Liguster in lichten Waldern, Auen und Gebaschen ebenso wie in sonnexponierten Hecken
So erkennt man das Gehölz

## Im Winter:

buschiger mittelgroger strauch (1 bis 3 m )
mit aufrechten, rutenformigen $Z$ weigen

- junge zweige fein behaart, altere zweige kahl

Knospen nurs mm groß, gegenstandig angeordnet "ק Beeren oft bis in den frohling am strauch

## In der Vegetationsperiode:

- $3-6 \mathrm{~cm}$ lange Blatter fohlen sich ledrig an, sind glattrandig und gegenstand ig angeordnet Blattoberseite dunkelgran und seidig matt glanzend, Unterseite heller und mit deutlicher Mittelrippe kleine weiße Blaten in $6-8 \mathrm{~cm}$ langen Rispen traubenahnliche Fruchtstande aus kleinen, schwarz glänzenden Beeren



## Wer steht drauf?

Die streng duftenden Bloten locken Bienen, Schmetterlinge und andere insekten zur Bestaubung an. verschiedenen Schmetterlingsarten dient der Liguster als futterpflanze. So frisst z.B. die Raupe des Ligusterschwarmers -eine Nachtfalterart - das Laub, und zahireiche Tagfalterarten, wie z.B. der Kleine Fuchs, laben sich am Nektar der Bloten. Die Frachte werden gerne von vogeln gefressen, die Samen dann ausgeschieden und dadurch verbreitet. Auch ein paar Nager naschen gerne an den schwarzen Beeren.

## Wofür taugt das Gehölz?

als dichtzweigige, gut schnittvertragliche Art gerne als
Sichtschutzhecke gepflanzt
von Imkern als Bienenweide geschatzt
wegen intensiven Wurzel- und Auslauferbildung als Bodenschutzpflanze for Boschungsbefestigungen geeignet

## FARBGEWALTIC

Die refen Beeren des Cemeinen Liqusters wurden fruherals farbstoff verwen.
det. Auf Wolle entsteht ein tiefes Biau, wobei mit Sisen- oder Aluminiunatber oder mit Soda wongeheizt wurde. Neben den refiten Berenen Können aber auch die Bütter, dieg gelben Zwe ige und de Rinde zum Färben venvendet werden.


HART UND WEICH ZUGLEICH
Das geb braune Hok des ugusters ist ouif crimentich
 simd wech und brag semund wurren schon in det deutet auch der Nome hin damn Liguster tomm vom lateinischen Wort गlgai

## FarbVerrückt!



## , App downloaden

, Herbstfäbung beobachten
, Insgesamt 66.000 gowinnen!
Wenn du Bjume und Farben magst, bist du bel unserem Citizen Science Projekt goldrichtlg und karnst mit dener Klasse $\in 1500$,- gewinnen!
Das geht vermich exy. Eliffach App dowriosden und wie verrüct die herbstiche Blattverfäbung bectachter.

Wir brauchen eure Augan
Manchmal heststettes rettig und extrem tunt, cann weder spat und farbich eher fad. Warum das mal so und mal solts, bestimmen die atnehernende Tagealage, Temperatur und wahrschenlich avch de Niederschlage Whe dese Faztoren jedoch musarmen spleten, wisen sebost de Wassenschartier/innen der Zentraarshat furMeteordoge und Geody ramik 2NiG noct micht genau. Dazu braucht es mog lictst Uict iectachingen an sirauchern und saumen vom Nesieder Ser bla 21 den Begg preir Vorarberg indom Thlauth indsm ins Laubvortartung und laubtal an mbgichst vision unsercer $\$$ Gahblte bsobachtat und an uns meldet. Wio das genau geht, checkt Ihr in der App.


Für die ganze Welt
Eure App-Besbatitungen werden geammett und heften Hellired 5 skx und
 sthieburg der Laitvertationg und des lauttales Zasatach weden eure
 und ksannen von Forscharininen aut dor gansen Wet genutat werfdent

Insgesamt 6.000,- gewinnen!
 Briturgmetien. Davi legst tu geen Baum in der App axa Cerbostation an und
 Antrag und jeder Aftuakikierng denner Spots, eseer weitere Buum oder Stzauch, den du ak Cebststation ankgst und rus cem au ene Medurg absetzt, bringt
 earsen EL..500,-Hauptgawimi De 3 Klawen mit den mesten Bectactiturgen gownien baves ced fir de xeseriaxa. Dem Seger wirben $\varepsilon 1500$. de zwellphatnerte kasse gewint E1.000-und ale d lithlatikerte 6500 -
 Obertuten gedigret Es weden atheen Sclence Awarces in beden Kategoren mit regesamt E6000_-vegebenl


## FarbVerrickt!

Wieso ist der Herbst manchmal so bunt? Wannes in der Natur Frorling wird, steuern in unseren Breten hauptsachich die Temperaturverhaitnkse Das bst gut erforscht und kann von den Wissenschatt. leer/innen der Zentralanstalt for Metearologle und Ceodynami ZAMG gut simulert werden. Ganz anders sieht es allerdings mit dem Hertst aus. Die Modelierung oer Hertsiphasen stell immer noch eine Heraustonderung dar. Neben den Temperaturverhathnsen watverd der Vegetationsperiose und der Photoperiooe, so nennt man de Tagestange, wird auch der Niederschag als Einflussfaktor vermutet Un deese Zusammenhange besser za verstenen und sagen zu bonnen, want der Herbst in den vieifatigen Reglonen Osterrects in der Natur withich irs land zieht, braucht es mogathat vele Beobachtungen an Strauchern und Baumen vom Neusiedler See bs zu den Bergapten Vorarbergs. Damit das gelingt, sind ale Schater/innen aut. geruiten, den Wassensctaftier/innen der ZAMG unter de Aume zu greifen und das Farbenspestaited des enziehensen Hebstes zuy beobachten!


## Facts zu FarbVerrückt

## Immer reitiser frithling,

Immarspiter Herbst
Mitser doppelten Cesthwindigheit ats im weltweiten Mattel st diel ahresmittetemperatur im Alpenraum wehrend det letrten 100 bhe um etwa $18^{\prime} \mathrm{C}$ angestioper Dos whit sich nacht mur wif uns Menschen sonsem auch zuf Plamzen und Tiere ais sozeht der frohling mitt der esten Bilste oder dem Begin des Lautasstricts um etwa tbes 10 Tage fratier ho Land ab noch vor 30 latien und der Beginn der Hertstive: tathung des laubes haz tich in manchen kegionen um einge: Tage nach hinten verschoben insperamt bt es dadurch 24 ether Veraingerung oer Vegetationsperiode um bis to 2 wei Wochen geiommen.


## FarbVerrückt



### 01.10 <br> 2015


(1) 01.10.2015 um 18:33 Uhr

Hänge-Birke
Mehrere Blätter sind verfärbt (10\%)

ア 筑
$\bigcirc$
Il

## FarbVerrückt


(8) Hier geht's zur Registrierung!

Verwickt


## FarbVerrückt


(8) Hier geht's zur Registrierungt

KARTE | FARBVERRÜCKT | INFORMATIONEN | PFLANZEN | SCHULEN | NEWS | DOWNLOADS | KONTAKT


## Lessons learned

- Apps much more time needed for development and approval than estimated -> demotivation of students
- Motivation of teachers is essential
- Mass campaign app shoould be more self explaining -> data lack quality
- Other resp. more plants (agricultural schools...), siting of the hedge
- KISS


## www.naturverrueckt.at

## www.phenowatch.at

## (en) (e) Sparkling science $>$ Wissenschaft ruft Schule Schule ruft Wissenschaft bmwf



# New developments in ECA\&D and E-OBS 

## ECA\&D Team

Royal Netherlands Meteorological Institute (KNMI)

## What is the European Climate Assessment \& Dataset?



## What is the European Climate Assessment \& Dataset?




- infrequent data updates from NMHS
- (very) small part of national network
- update of metadata is a challenge


## Use of ECA\&D




E-OBS is used in: biology (11\%), climate science (10\%), hydrology (6\%), agriculture (5\%) and health (3\%)

## Aim of ECA\&D

- provide a pan-European view on climate variability and change
- provide dataproducts to
- scientific research community
- National Meteorological Services
- complementary to the products provided by the NMHSs
- respects the data policy of the NMHS


# Monitoring European climate temperature 



## Monitoring European climate extreme events

Central European flooding of 2013


http://cib.knmi.nl

## New developments - data update

- Sogrape S.A. (Portugal) now contributes data
- number of NMSs contributing monthly updates increases
(ch, cz, de, fi, ie, nl, no, si)
- contacts with regional weather services in Italy

(ARPA-SIMC, ARPA Valle d'Aosta)


## New developments - EOBS improved

gamma-transform technique instead of spline in the monthly value


Month Tolals


E-O日S V10


CDD: undershoot corrected

## New developments - daily updates

## Development of heat wave end of June/start of July 2015



## New developments - E-OBS-based indices

Select period \& Index (7)			$\square \mathrm{RX5}$ day: Highest 5-day precipitation amc $* \gg$		
Select y					
2014					
Define range	min: 0	max: 200	Submit	Reset	



## Future developments homogenization of ECA\&D data




- how to deal with homogenized data from NMHSs?
- avoid two homogenized versions of one series
- can we think of a more intelligent way of blending?
- avoid blending two very distinct (but nearby) stations


## Conclusions

- give us your feed back
- how to be more useful for NMHSs
- how to be more useful for Scientific research community
- how to avoid being a threat to NMHSs
contact us at: eca@knmi.nl

